jonathon
|
|
98618df6-635a-4bab-91c9-a30788598b2a
|
2025/06/13 06:57:07
|
2025/06/13 06:57:07
|
2025/06/13 06:57:07
|
96 ms
|
204 ms
|
DESCRIBE default.airports
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'DescribeRelation false, [col_name#1937, data_type#1938, comment#1939]
+- 'UnresolvedTableOrView [default, airports], DESCRIBE TABLE, true
== Analyzed Logical Plan ==
col_name: string, data_type: string, comment: string
DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#1937, data_type#1938, comment#1939]
== Optimized Logical Plan ==
CommandResult [col_name#1937, data_type#1938, comment#1939], Execute DescribeTableCommand, [[id,string,null], [type,string,null], [name,string,null], [lat,double,null], [lon,double,null], [elev,double,null], [continent,string,null], [country,string,null], [region,string,null], [city,string,null], [iata,string,null], [code,string,null], [gps,string,null]]
+- DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#1937, data_type#1938, comment#1939]
== Physical Plan ==
CommandResult [col_name#1937, data_type#1938, comment#1939]
+- Execute DescribeTableCommand
+- DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#1937, data_type#1938, comment#1939]
|
jonathon
|
|
fd73230f-0d28-4938-91c3-3beae7d8300b
|
2025/06/13 06:57:07
|
2025/06/13 06:57:07
|
2025/06/13 06:57:07
|
27 ms
|
122 ms
|
Listing columns 'catalog : null, schemaPattern : default, tablePattern : airports, columnName : null'
|
CLOSED
|
|
jonathon
|
[32]
|
03d4d9e8-6a2d-4d2d-a253-63696f36868f
|
2025/06/13 06:57:07
|
2025/06/13 06:57:08
|
2025/06/13 06:57:08
|
307 ms
|
403 ms
|
SELECT C_4 AS C_17, C_6 AS C_13, C_7 AS C_18, C_4331 AS C_21, C_4332 AS C_16, C_4333 AS C_14, C_0 AS C_12, C_8 AS C_23, C_1 AS C_15, C_9 AS C_20, C_2 AS C_22, C_10 AS C_25, C_11 AS C_24, C_5 AS C_19 FROM (SELECT C_64656661756c745f616972706f727473.`id` AS C_4, C_64656661756c745f616972706f727473.`type` AS C_6, C_64656661756c745f616972706f727473.`name` AS C_7, C_64656661756c745f616972706f727473.`lat` AS C_43, C_64656661756c745f616972706f727473.`lon` AS C_3, C_64656661756c745f616972706f727473.`elev` AS C_5, C_64656661756c745f616972706f727473.`continent` AS C_0, C_64656661756c745f616972706f727473.`country` AS C_8, C_64656661756c745f616972706f727473.`region` AS C_1, C_64656661756c745f616972706f727473.`city` AS C_9, C_64656661756c745f616972706f727473.`iata` AS C_2, C_64656661756c745f616972706f727473.`code` AS C_10, C_64656661756c745f616972706f727473.`gps` AS C_11, (round((C_64656661756c745f616972706f727473.`lat` * power(1.000000000000000E+001, 3)), 0) / power(1.000000000000000E+001, 3)) AS C_4331, (round((C_64656661756c745f616972706f727473.`lon` * power(1.000000000000000E+001, 3)), 0) / power(1.000000000000000E+001, 3)) AS C_4332, (round((C_64656661756c745f616972706f727473.`elev` * power(1.000000000000000E+001, 3)), 0) / power(1.000000000000000E+001, 3)) AS C_4333 FROM `default`.`airports` C_64656661756c745f616972706f727473 WHERE ((C_64656661756c745f616972706f727473.`lon` <= (- 1.040500000000000E+002)) AND (C_64656661756c745f616972706f727473.`lon` >= (- 1.110500000000000E+002)) AND (C_64656661756c745f616972706f727473.`lat` >= 4.100000000000000E+001) AND (C_64656661756c745f616972706f727473.`lat` <= 4.500000000000000E+001)) ) C_4954424c ORDER BY C_19 DESC LIMIT 5
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'GlobalLimit 5
+- 'LocalLimit 5
+- 'Sort ['C_19 DESC NULLS LAST], true
+- 'Project ['C_4 AS C_17#1976, 'C_6 AS C_13#1977, 'C_7 AS C_18#1978, 'C_4331 AS C_21#1979, 'C_4332 AS C_16#1980, 'C_4333 AS C_14#1981, 'C_0 AS C_12#1982, 'C_8 AS C_23#1983, 'C_1 AS C_15#1984, 'C_9 AS C_20#1985, 'C_2 AS C_22#1986, 'C_10 AS C_25#1987, 'C_11 AS C_24#1988, 'C_5 AS C_19#1989]
+- 'SubqueryAlias C_4954424c
+- 'Project ['C_64656661756c745f616972706f727473.id AS C_4#1960, 'C_64656661756c745f616972706f727473.type AS C_6#1961, 'C_64656661756c745f616972706f727473.name AS C_7#1962, 'C_64656661756c745f616972706f727473.lat AS C_43#1963, 'C_64656661756c745f616972706f727473.lon AS C_3#1964, 'C_64656661756c745f616972706f727473.elev AS C_5#1965, 'C_64656661756c745f616972706f727473.continent AS C_0#1966, 'C_64656661756c745f616972706f727473.country AS C_8#1967, 'C_64656661756c745f616972706f727473.region AS C_1#1968, 'C_64656661756c745f616972706f727473.city AS C_9#1969, 'C_64656661756c745f616972706f727473.iata AS C_2#1970, 'C_64656661756c745f616972706f727473.code AS C_10#1971, 'C_64656661756c745f616972706f727473.gps AS C_11#1972, ('round(('C_64656661756c745f616972706f727473.lat * 'power(10.0, 3)), 0) / 'power(10.0, 3)) AS C_4331#1973, ('round(('C_64656661756c745f616972706f727473.lon * 'power(10.0, 3)), 0) / 'power(10.0, 3)) AS C_4332#1974, ('round(('C_64656661756c745f616972706f727473.elev * 'power(10.0, 3)), 0) / 'power(10.0, 3)) AS C_4333#1975]
+- 'Filter ((('C_64656661756c745f616972706f727473.lon <= -104.05) AND ('C_64656661756c745f616972706f727473.lon >= -111.05)) AND (('C_64656661756c745f616972706f727473.lat >= 41.0) AND ('C_64656661756c745f616972706f727473.lat <= 45.0)))
+- 'SubqueryAlias C_64656661756c745f616972706f727473
+- 'UnresolvedRelation [default, airports], [], false
== Analyzed Logical Plan ==
C_17: string, C_13: string, C_18: string, C_21: double, C_16: double, C_14: double, C_12: string, C_23: string, C_15: string, C_20: string, C_22: string, C_25: string, C_24: string, C_19: double
GlobalLimit 5
+- LocalLimit 5
+- Sort [C_19#1989 DESC NULLS LAST], true
+- Project [C_4#1960 AS C_17#1976, C_6#1961 AS C_13#1977, C_7#1962 AS C_18#1978, C_4331#1973 AS C_21#1979, C_4332#1974 AS C_16#1980, C_4333#1975 AS C_14#1981, C_0#1966 AS C_12#1982, C_8#1967 AS C_23#1983, C_1#1968 AS C_15#1984, C_9#1969 AS C_20#1985, C_2#1970 AS C_22#1986, C_10#1971 AS C_25#1987, C_11#1972 AS C_24#1988, C_5#1965 AS C_19#1989]
+- SubqueryAlias C_4954424c
+- Project [id#1990 AS C_4#1960, type#1991 AS C_6#1961, name#1992 AS C_7#1962, lat#1993 AS C_43#1963, lon#1994 AS C_3#1964, elev#1995 AS C_5#1965, continent#1996 AS C_0#1966, country#1997 AS C_8#1967, region#1998 AS C_1#1968, city#1999 AS C_9#1969, iata#2000 AS C_2#1970, code#2001 AS C_10#1971, gps#2002 AS C_11#1972, (round((lat#1993 * POWER(10.0, cast(3 as double))), 0) / POWER(10.0, cast(3 as double))) AS C_4331#1973, (round((lon#1994 * POWER(10.0, cast(3 as double))), 0) / POWER(10.0, cast(3 as double))) AS C_4332#1974, (round((elev#1995 * POWER(10.0, cast(3 as double))), 0) / POWER(10.0, cast(3 as double))) AS C_4333#1975]
+- Filter (((lon#1994 <= -104.05) AND (lon#1994 >= -111.05)) AND ((lat#1993 >= 41.0) AND (lat#1993 <= 45.0)))
+- SubqueryAlias C_64656661756c745f616972706f727473
+- SubqueryAlias spark_catalog.default.airports
+- Relation spark_catalog.default.airports[id#1990,type#1991,name#1992,lat#1993,lon#1994,elev#1995,continent#1996,country#1997,region#1998,city#1999,iata#2000,code#2001,gps#2002] parquet
== Optimized Logical Plan ==
GlobalLimit 5
+- LocalLimit 5
+- Sort [C_19#1989 DESC NULLS LAST], true
+- Project [id#1990 AS C_17#1976, type#1991 AS C_13#1977, name#1992 AS C_18#1978, (round((lat#1993 * 1000.0), 0) / 1000.0) AS C_21#1979, (round((lon#1994 * 1000.0), 0) / 1000.0) AS C_16#1980, (round((elev#1995 * 1000.0), 0) / 1000.0) AS C_14#1981, continent#1996 AS C_12#1982, country#1997 AS C_23#1983, region#1998 AS C_15#1984, city#1999 AS C_20#1985, iata#2000 AS C_22#1986, code#2001 AS C_25#1987, gps#2002 AS C_24#1988, elev#1995 AS C_19#1989]
+- Filter ((isnotnull(lon#1994) AND isnotnull(lat#1993)) AND (((lon#1994 <= -104.05) AND (lon#1994 >= -111.05)) AND ((lat#1993 >= 41.0) AND (lat#1993 <= 45.0))))
+- Relation spark_catalog.default.airports[id#1990,type#1991,name#1992,lat#1993,lon#1994,elev#1995,continent#1996,country#1997,region#1998,city#1999,iata#2000,code#2001,gps#2002] parquet
== Physical Plan ==
TakeOrderedAndProject(limit=5, orderBy=[C_19#1989 DESC NULLS LAST], output=[C_17#1976,C_13#1977,C_18#1978,C_21#1979,C_16#1980,C_14#1981,C_12#1982,C_23#1983,C_15#1984,C_20#1985,C_22#1986,C_25#1987,C_24#1988,C_19#1989])
+- *(1) Project [id#1990 AS C_17#1976, type#1991 AS C_13#1977, name#1992 AS C_18#1978, (round((lat#1993 * 1000.0), 0) / 1000.0) AS C_21#1979, (round((lon#1994 * 1000.0), 0) / 1000.0) AS C_16#1980, (round((elev#1995 * 1000.0), 0) / 1000.0) AS C_14#1981, continent#1996 AS C_12#1982, country#1997 AS C_23#1983, region#1998 AS C_15#1984, city#1999 AS C_20#1985, iata#2000 AS C_22#1986, code#2001 AS C_25#1987, gps#2002 AS C_24#1988, elev#1995 AS C_19#1989]
+- *(1) Filter (((((isnotnull(lon#1994) AND isnotnull(lat#1993)) AND (lon#1994 <= -104.05)) AND (lon#1994 >= -111.05)) AND (lat#1993 >= 41.0)) AND (lat#1993 <= 45.0))
+- *(1) ColumnarToRow
+- FileScan parquet spark_catalog.default.airports[id#1990,type#1991,name#1992,lat#1993,lon#1994,elev#1995,continent#1996,country#1997,region#1998,city#1999,iata#2000,code#2001,gps#2002] Batched: true, DataFilters: [isnotnull(lon#1994), isnotnull(lat#1993), (lon#1994 <= -104.05), (lon#1994 >= -111.05), (lat#199..., Format: Parquet, Location: InMemoryFileIndex(1 paths)[file:/home/acdcadmin/spark-warehouse/airports], PartitionFilters: [], PushedFilters: [IsNotNull(lon), IsNotNull(lat), LessThanOrEqual(lon,-104.05), GreaterThanOrEqual(lon,-111.05), G..., ReadSchema: struct<id:string,type:string,name:string,lat:double,lon:double,elev:double,continent:string,count...
|
jonathon
|
|
be589622-87e4-495f-ab8e-f1bb824cae28
|
2025/06/13 07:16:50
|
2025/06/13 07:16:51
|
2025/06/13 07:16:51
|
41 ms
|
183 ms
|
set -v
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
SetCommand (-v,None)
== Analyzed Logical Plan ==
key: string, value: string, meaning: string, Since version: string
SetCommand (-v,None)
== Optimized Logical Plan ==
CommandResult [key#2033, value#2034, meaning#2035, Since version#2036], Execute SetCommand, [[spark.sql.adaptive.advisoryPartitionSizeInBytes,<value of spark.sql.adaptive.shuffle.targetPostShuffleInputSize>,The advisory size in bytes of the shuffle partition during adaptive optimization (when spark.sql.adaptive.enabled is true). It takes effect when Spark coalesces small shuffle partitions or splits skewed shuffle partition.,3.0.0], [spark.sql.adaptive.autoBroadcastJoinThreshold,<undefined>,Configures the maximum size in bytes for a table that will be broadcast to all worker nodes when performing a join. By setting this value to -1 broadcasting can be disabled. The default value is same with spark.sql.autoBroadcastJoinThreshold. Note that, this config is used only in adaptive framework.,3.2.0], [spark.sql.adaptive.coalescePartitions.enabled,true,When true and 'spark.sql.adaptive.enabled' is true, Spark will coalesce contiguous shuffle partitions according to the target size (specified by 'spark.sql.adaptive.advisoryPartitionSizeInBytes'), to avoid too many small tasks.,3.0.0], [spark.sql.adaptive.coalescePartitions.initialPartitionNum,<undefined>,The initial number of shuffle partitions before coalescing. If not set, it equals to spark.sql.shuffle.partitions. This configuration only has an effect when 'spark.sql.adaptive.enabled' and 'spark.sql.adaptive.coalescePartitions.enabled' are both true.,3.0.0], [spark.sql.adaptive.coalescePartitions.minPartitionSize,1MB,The minimum size of shuffle partitions after coalescing. This is useful when the adaptively calculated target size is too small during partition coalescing.,3.2.0], [spark.sql.adaptive.coalescePartitions.parallelismFirst,true,When true, Spark does not respect the target size specified by 'spark.sql.adaptive.advisoryPartitionSizeInBytes' (default 64MB) when coalescing contiguous shuffle partitions, but adaptively calculate the target size according to the default parallelism of the Spark cluster. The calculated size is usually smaller than the configured target size. This is to maximize the parallelism and avoid performance regression when enabling adaptive query execution. It's recommended to set this config to false and respect the configured target size.,3.2.0], [spark.sql.adaptive.customCostEvaluatorClass,<undefined>,The custom cost evaluator class to be used for adaptive execution. If not being set, Spark will use its own SimpleCostEvaluator by default.,3.2.0], [spark.sql.adaptive.enabled,true,When true, enable adaptive query execution, which re-optimizes the query plan in the middle of query execution, based on accurate runtime statistics.,1.6.0], [spark.sql.adaptive.forceOptimizeSkewedJoin,false,When true, force enable OptimizeSkewedJoin even if it introduces extra shuffle.,3.3.0], [spark.sql.adaptive.localShuffleReader.enabled,true,When true and 'spark.sql.adaptive.enabled' is true, Spark tries to use local shuffle reader to read the shuffle data when the shuffle partitioning is not needed, for example, after converting sort-merge join to broadcast-hash join.,3.0.0], [spark.sql.adaptive.maxShuffledHashJoinLocalMapThreshold,0b,Configures the maximum size in bytes per partition that can be allowed to build local hash map. If this value is not smaller than spark.sql.adaptive.advisoryPartitionSizeInBytes and all the partition size are not larger than this config, join selection prefer to use shuffled hash join instead of sort merge join regardless of the value of spark.sql.join.preferSortMergeJoin.,3.2.0], [spark.sql.adaptive.optimizeSkewsInRebalancePartitions.enabled,true,When true and 'spark.sql.adaptive.enabled' is true, Spark will optimize the skewed shuffle partitions in RebalancePartitions and split them to smaller ones according to the target size (specified by 'spark.sql.adaptive.advisoryPartitionSizeInBytes'), to avoid data skew.,3.2.0], [spark.sql.adaptive.optimizer.excludedRules,<undefined>,Configures a list of rules to be disabled in the adaptive optimizer, in which the rules are specified by their rule names and separated by comma. The optimizer will log the rules that have indeed been excluded.,3.1.0], [spark.sql.adaptive.rebalancePartitionsSmallPartitionFactor,0.2,A partition will be merged during splitting if its size is small than this factor multiply spark.sql.adaptive.advisoryPartitionSizeInBytes.,3.3.0], [spark.sql.adaptive.skewJoin.enabled,true,When true and 'spark.sql.adaptive.enabled' is true, Spark dynamically handles skew in shuffled join (sort-merge and shuffled hash) by splitting (and replicating if needed) skewed partitions.,3.0.0], [spark.sql.adaptive.skewJoin.skewedPartitionFactor,5.0,A partition is considered as skewed if its size is larger than this factor multiplying the median partition size and also larger than 'spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes',3.0.0], [spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes,256MB,A partition is considered as skewed if its size in bytes is larger than this threshold and also larger than 'spark.sql.adaptive.skewJoin.skewedPartitionFactor' multiplying the median partition size. Ideally this config should be set larger than 'spark.sql.adaptive.advisoryPartitionSizeInBytes'.,3.0.0], [spark.sql.allowNamedFunctionArguments,true,If true, Spark will turn on support for named parameters for all functions that has it implemented.,3.5.0], [spark.sql.ansi.doubleQuotedIdentifiers,false,When true and 'spark.sql.ansi.enabled' is true, Spark SQL reads literals enclosed in double quoted (") as identifiers. When false they are read as string literals.,3.4.0], [spark.sql.ansi.enabled,false,When true, Spark SQL uses an ANSI compliant dialect instead of being Hive compliant. For example, Spark will throw an exception at runtime instead of returning null results when the inputs to a SQL operator/function are invalid.For full details of this dialect, you can find them in the section "ANSI Compliance" of Spark's documentation. Some ANSI dialect features may be not from the ANSI SQL standard directly, but their behaviors align with ANSI SQL's style,3.0.0], [spark.sql.ansi.enforceReservedKeywords,false,When true and 'spark.sql.ansi.enabled' is true, the Spark SQL parser enforces the ANSI reserved keywords and forbids SQL queries that use reserved keywords as alias names and/or identifiers for table, view, function, etc.,3.3.0], [spark.sql.ansi.relationPrecedence,false,When true and 'spark.sql.ansi.enabled' is true, JOIN takes precedence over comma when combining relation. For example, `t1, t2 JOIN t3` should result to `t1 X (t2 X t3)`. If the config is false, the result is `(t1 X t2) X t3`.,3.4.0], [spark.sql.autoBroadcastJoinThreshold,10MB,Configures the maximum size in bytes for a table that will be broadcast to all worker nodes when performing a join. By setting this value to -1 broadcasting can be disabled. Note that currently statistics are only supported for Hive Metastore tables where the command `ANALYZE TABLE <tableName> COMPUTE STATISTICS noscan` has been run, and file-based data source tables where the statistics are computed directly on the files of data.,1.1.0], [spark.sql.avro.compression.codec,snappy,Compression codec used in writing of AVRO files. Supported codecs: uncompressed, deflate, snappy, bzip2, xz and zstandard. Default codec is snappy.,2.4.0], ... 183 more fields]
+- SetCommand (-v,None)
== Physical Plan ==
CommandResult [key#2033, value#2034, meaning#2035, Since version#2036]
+- Execute SetCommand
+- SetCommand (-v,None)
|
jonathon
|
|
8418ef72-3034-46eb-9919-57a3a94cb1a3
|
2025/06/13 07:16:51
|
2025/06/13 07:16:51
|
2025/06/13 07:16:51
|
251 ms
|
346 ms
|
Listing tables 'catalog : null, schemaPattern : %, tableTypes : null, tableName : %'
|
CLOSED
|
|
jonathon
|
|
63f33d59-8ed5-4bfc-a086-5532e1e184fa
|
2025/06/13 07:16:51
|
2025/06/13 07:16:51
|
2025/06/13 07:16:51
|
32 ms
|
126 ms
|
Listing columns 'catalog : null, schemaPattern : default, tablePattern : airports, columnName : null'
|
CLOSED
|
|
jonathon
|
|
4287216d-9cf3-48d4-8586-f3259d75a4db
|
2025/06/13 07:16:51
|
2025/06/13 07:16:51
|
2025/06/13 07:16:51
|
90 ms
|
189 ms
|
DESCRIBE default.airports
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'DescribeRelation false, [col_name#2058, data_type#2059, comment#2060]
+- 'UnresolvedTableOrView [default, airports], DESCRIBE TABLE, true
== Analyzed Logical Plan ==
col_name: string, data_type: string, comment: string
DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#2058, data_type#2059, comment#2060]
== Optimized Logical Plan ==
CommandResult [col_name#2058, data_type#2059, comment#2060], Execute DescribeTableCommand, [[id,string,null], [type,string,null], [name,string,null], [lat,double,null], [lon,double,null], [elev,double,null], [continent,string,null], [country,string,null], [region,string,null], [city,string,null], [iata,string,null], [code,string,null], [gps,string,null]]
+- DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#2058, data_type#2059, comment#2060]
== Physical Plan ==
CommandResult [col_name#2058, data_type#2059, comment#2060]
+- Execute DescribeTableCommand
+- DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#2058, data_type#2059, comment#2060]
|
jonathon
|
|
a1b8f8cb-013e-4133-a96e-d018a40ad262
|
2025/06/13 07:16:51
|
2025/06/13 07:16:52
|
2025/06/13 07:16:52
|
95 ms
|
192 ms
|
DESCRIBE default.airports
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'DescribeRelation false, [col_name#2081, data_type#2082, comment#2083]
+- 'UnresolvedTableOrView [default, airports], DESCRIBE TABLE, true
== Analyzed Logical Plan ==
col_name: string, data_type: string, comment: string
DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#2081, data_type#2082, comment#2083]
== Optimized Logical Plan ==
CommandResult [col_name#2081, data_type#2082, comment#2083], Execute DescribeTableCommand, [[id,string,null], [type,string,null], [name,string,null], [lat,double,null], [lon,double,null], [elev,double,null], [continent,string,null], [country,string,null], [region,string,null], [city,string,null], [iata,string,null], [code,string,null], [gps,string,null]]
+- DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#2081, data_type#2082, comment#2083]
== Physical Plan ==
CommandResult [col_name#2081, data_type#2082, comment#2083]
+- Execute DescribeTableCommand
+- DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#2081, data_type#2082, comment#2083]
|
jonathon
|
|
2641dfe3-8486-4965-b35e-af9a5acad4e5
|
2025/06/13 07:16:52
|
2025/06/13 07:16:52
|
2025/06/13 07:16:52
|
29 ms
|
125 ms
|
Listing columns 'catalog : null, schemaPattern : default, tablePattern : airports, columnName : null'
|
CLOSED
|
|
jonathon
|
[33]
|
dd9c74a0-d6cd-4177-80d7-a0ed129f43bf
|
2025/06/13 07:16:52
|
2025/06/13 07:16:52
|
2025/06/13 07:16:52
|
211 ms
|
308 ms
|
SELECT C_10 AS C_12, C_2 AS C_14, C_43 AS C_17, C_4331 AS C_18, C_4332 AS C_21, C_4333 AS C_19, C_9 AS C_23, C_0 AS C_16, C_3 AS C_15, C_1 AS C_22, C_4 AS C_13, C_5 AS C_24, C_11 AS C_25, C_6 AS C_20 FROM (SELECT C_64656661756c745f616972706f727473.`id` AS C_10, C_64656661756c745f616972706f727473.`type` AS C_2, C_64656661756c745f616972706f727473.`name` AS C_43, C_64656661756c745f616972706f727473.`lat` AS C_7, C_64656661756c745f616972706f727473.`lon` AS C_8, C_64656661756c745f616972706f727473.`elev` AS C_6, C_64656661756c745f616972706f727473.`continent` AS C_9, C_64656661756c745f616972706f727473.`country` AS C_0, C_64656661756c745f616972706f727473.`region` AS C_3, C_64656661756c745f616972706f727473.`city` AS C_1, C_64656661756c745f616972706f727473.`iata` AS C_4, C_64656661756c745f616972706f727473.`code` AS C_5, C_64656661756c745f616972706f727473.`gps` AS C_11, (round((C_64656661756c745f616972706f727473.`lat` * power(1.000000000000000E+001, 3)), 0) / power(1.000000000000000E+001, 3)) AS C_4331, (round((C_64656661756c745f616972706f727473.`lon` * power(1.000000000000000E+001, 3)), 0) / power(1.000000000000000E+001, 3)) AS C_4332, (round((C_64656661756c745f616972706f727473.`elev` * power(1.000000000000000E+001, 3)), 0) / power(1.000000000000000E+001, 3)) AS C_4333 FROM `default`.`airports` C_64656661756c745f616972706f727473 WHERE ((C_64656661756c745f616972706f727473.`lon` <= (- 1.040500000000000E+002)) AND (C_64656661756c745f616972706f727473.`lon` >= (- 1.110500000000000E+002)) AND (C_64656661756c745f616972706f727473.`lat` >= 4.100000000000000E+001) AND (C_64656661756c745f616972706f727473.`lat` <= 4.500000000000000E+001)) ) C_4954424c ORDER BY C_20 DESC LIMIT 5
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'GlobalLimit 5
+- 'LocalLimit 5
+- 'Sort ['C_20 DESC NULLS LAST], true
+- 'Project ['C_10 AS C_12#2120, 'C_2 AS C_14#2121, 'C_43 AS C_17#2122, 'C_4331 AS C_18#2123, 'C_4332 AS C_21#2124, 'C_4333 AS C_19#2125, 'C_9 AS C_23#2126, 'C_0 AS C_16#2127, 'C_3 AS C_15#2128, 'C_1 AS C_22#2129, 'C_4 AS C_13#2130, 'C_5 AS C_24#2131, 'C_11 AS C_25#2132, 'C_6 AS C_20#2133]
+- 'SubqueryAlias C_4954424c
+- 'Project ['C_64656661756c745f616972706f727473.id AS C_10#2104, 'C_64656661756c745f616972706f727473.type AS C_2#2105, 'C_64656661756c745f616972706f727473.name AS C_43#2106, 'C_64656661756c745f616972706f727473.lat AS C_7#2107, 'C_64656661756c745f616972706f727473.lon AS C_8#2108, 'C_64656661756c745f616972706f727473.elev AS C_6#2109, 'C_64656661756c745f616972706f727473.continent AS C_9#2110, 'C_64656661756c745f616972706f727473.country AS C_0#2111, 'C_64656661756c745f616972706f727473.region AS C_3#2112, 'C_64656661756c745f616972706f727473.city AS C_1#2113, 'C_64656661756c745f616972706f727473.iata AS C_4#2114, 'C_64656661756c745f616972706f727473.code AS C_5#2115, 'C_64656661756c745f616972706f727473.gps AS C_11#2116, ('round(('C_64656661756c745f616972706f727473.lat * 'power(10.0, 3)), 0) / 'power(10.0, 3)) AS C_4331#2117, ('round(('C_64656661756c745f616972706f727473.lon * 'power(10.0, 3)), 0) / 'power(10.0, 3)) AS C_4332#2118, ('round(('C_64656661756c745f616972706f727473.elev * 'power(10.0, 3)), 0) / 'power(10.0, 3)) AS C_4333#2119]
+- 'Filter ((('C_64656661756c745f616972706f727473.lon <= -104.05) AND ('C_64656661756c745f616972706f727473.lon >= -111.05)) AND (('C_64656661756c745f616972706f727473.lat >= 41.0) AND ('C_64656661756c745f616972706f727473.lat <= 45.0)))
+- 'SubqueryAlias C_64656661756c745f616972706f727473
+- 'UnresolvedRelation [default, airports], [], false
== Analyzed Logical Plan ==
C_12: string, C_14: string, C_17: string, C_18: double, C_21: double, C_19: double, C_23: string, C_16: string, C_15: string, C_22: string, C_13: string, C_24: string, C_25: string, C_20: double
GlobalLimit 5
+- LocalLimit 5
+- Sort [C_20#2133 DESC NULLS LAST], true
+- Project [C_10#2104 AS C_12#2120, C_2#2105 AS C_14#2121, C_43#2106 AS C_17#2122, C_4331#2117 AS C_18#2123, C_4332#2118 AS C_21#2124, C_4333#2119 AS C_19#2125, C_9#2110 AS C_23#2126, C_0#2111 AS C_16#2127, C_3#2112 AS C_15#2128, C_1#2113 AS C_22#2129, C_4#2114 AS C_13#2130, C_5#2115 AS C_24#2131, C_11#2116 AS C_25#2132, C_6#2109 AS C_20#2133]
+- SubqueryAlias C_4954424c
+- Project [id#2134 AS C_10#2104, type#2135 AS C_2#2105, name#2136 AS C_43#2106, lat#2137 AS C_7#2107, lon#2138 AS C_8#2108, elev#2139 AS C_6#2109, continent#2140 AS C_9#2110, country#2141 AS C_0#2111, region#2142 AS C_3#2112, city#2143 AS C_1#2113, iata#2144 AS C_4#2114, code#2145 AS C_5#2115, gps#2146 AS C_11#2116, (round((lat#2137 * POWER(10.0, cast(3 as double))), 0) / POWER(10.0, cast(3 as double))) AS C_4331#2117, (round((lon#2138 * POWER(10.0, cast(3 as double))), 0) / POWER(10.0, cast(3 as double))) AS C_4332#2118, (round((elev#2139 * POWER(10.0, cast(3 as double))), 0) / POWER(10.0, cast(3 as double))) AS C_4333#2119]
+- Filter (((lon#2138 <= -104.05) AND (lon#2138 >= -111.05)) AND ((lat#2137 >= 41.0) AND (lat#2137 <= 45.0)))
+- SubqueryAlias C_64656661756c745f616972706f727473
+- SubqueryAlias spark_catalog.default.airports
+- Relation spark_catalog.default.airports[id#2134,type#2135,name#2136,lat#2137,lon#2138,elev#2139,continent#2140,country#2141,region#2142,city#2143,iata#2144,code#2145,gps#2146] parquet
== Optimized Logical Plan ==
GlobalLimit 5
+- LocalLimit 5
+- Sort [C_20#2133 DESC NULLS LAST], true
+- Project [id#2134 AS C_12#2120, type#2135 AS C_14#2121, name#2136 AS C_17#2122, (round((lat#2137 * 1000.0), 0) / 1000.0) AS C_18#2123, (round((lon#2138 * 1000.0), 0) / 1000.0) AS C_21#2124, (round((elev#2139 * 1000.0), 0) / 1000.0) AS C_19#2125, continent#2140 AS C_23#2126, country#2141 AS C_16#2127, region#2142 AS C_15#2128, city#2143 AS C_22#2129, iata#2144 AS C_13#2130, code#2145 AS C_24#2131, gps#2146 AS C_25#2132, elev#2139 AS C_20#2133]
+- Filter ((isnotnull(lon#2138) AND isnotnull(lat#2137)) AND (((lon#2138 <= -104.05) AND (lon#2138 >= -111.05)) AND ((lat#2137 >= 41.0) AND (lat#2137 <= 45.0))))
+- Relation spark_catalog.default.airports[id#2134,type#2135,name#2136,lat#2137,lon#2138,elev#2139,continent#2140,country#2141,region#2142,city#2143,iata#2144,code#2145,gps#2146] parquet
== Physical Plan ==
TakeOrderedAndProject(limit=5, orderBy=[C_20#2133 DESC NULLS LAST], output=[C_12#2120,C_14#2121,C_17#2122,C_18#2123,C_21#2124,C_19#2125,C_23#2126,C_16#2127,C_15#2128,C_22#2129,C_13#2130,C_24#2131,C_25#2132,C_20#2133])
+- *(1) Project [id#2134 AS C_12#2120, type#2135 AS C_14#2121, name#2136 AS C_17#2122, (round((lat#2137 * 1000.0), 0) / 1000.0) AS C_18#2123, (round((lon#2138 * 1000.0), 0) / 1000.0) AS C_21#2124, (round((elev#2139 * 1000.0), 0) / 1000.0) AS C_19#2125, continent#2140 AS C_23#2126, country#2141 AS C_16#2127, region#2142 AS C_15#2128, city#2143 AS C_22#2129, iata#2144 AS C_13#2130, code#2145 AS C_24#2131, gps#2146 AS C_25#2132, elev#2139 AS C_20#2133]
+- *(1) Filter (((((isnotnull(lon#2138) AND isnotnull(lat#2137)) AND (lon#2138 <= -104.05)) AND (lon#2138 >= -111.05)) AND (lat#2137 >= 41.0)) AND (lat#2137 <= 45.0))
+- *(1) ColumnarToRow
+- FileScan parquet spark_catalog.default.airports[id#2134,type#2135,name#2136,lat#2137,lon#2138,elev#2139,continent#2140,country#2141,region#2142,city#2143,iata#2144,code#2145,gps#2146] Batched: true, DataFilters: [isnotnull(lon#2138), isnotnull(lat#2137), (lon#2138 <= -104.05), (lon#2138 >= -111.05), (lat#213..., Format: Parquet, Location: InMemoryFileIndex(1 paths)[file:/home/acdcadmin/spark-warehouse/airports], PartitionFilters: [], PushedFilters: [IsNotNull(lon), IsNotNull(lat), LessThanOrEqual(lon,-104.05), GreaterThanOrEqual(lon,-111.05), G..., ReadSchema: struct<id:string,type:string,name:string,lat:double,lon:double,elev:double,continent:string,count...
|
jonathon
|
|
0b3af494-d430-4b8d-8d5c-c65a2a33f5fa
|
2025/06/13 07:55:30
|
2025/06/13 07:55:30
|
2025/06/13 07:55:30
|
40 ms
|
272 ms
|
set -v
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
SetCommand (-v,None)
== Analyzed Logical Plan ==
key: string, value: string, meaning: string, Since version: string
SetCommand (-v,None)
== Optimized Logical Plan ==
CommandResult [key#2177, value#2178, meaning#2179, Since version#2180], Execute SetCommand, [[spark.sql.adaptive.advisoryPartitionSizeInBytes,<value of spark.sql.adaptive.shuffle.targetPostShuffleInputSize>,The advisory size in bytes of the shuffle partition during adaptive optimization (when spark.sql.adaptive.enabled is true). It takes effect when Spark coalesces small shuffle partitions or splits skewed shuffle partition.,3.0.0], [spark.sql.adaptive.autoBroadcastJoinThreshold,<undefined>,Configures the maximum size in bytes for a table that will be broadcast to all worker nodes when performing a join. By setting this value to -1 broadcasting can be disabled. The default value is same with spark.sql.autoBroadcastJoinThreshold. Note that, this config is used only in adaptive framework.,3.2.0], [spark.sql.adaptive.coalescePartitions.enabled,true,When true and 'spark.sql.adaptive.enabled' is true, Spark will coalesce contiguous shuffle partitions according to the target size (specified by 'spark.sql.adaptive.advisoryPartitionSizeInBytes'), to avoid too many small tasks.,3.0.0], [spark.sql.adaptive.coalescePartitions.initialPartitionNum,<undefined>,The initial number of shuffle partitions before coalescing. If not set, it equals to spark.sql.shuffle.partitions. This configuration only has an effect when 'spark.sql.adaptive.enabled' and 'spark.sql.adaptive.coalescePartitions.enabled' are both true.,3.0.0], [spark.sql.adaptive.coalescePartitions.minPartitionSize,1MB,The minimum size of shuffle partitions after coalescing. This is useful when the adaptively calculated target size is too small during partition coalescing.,3.2.0], [spark.sql.adaptive.coalescePartitions.parallelismFirst,true,When true, Spark does not respect the target size specified by 'spark.sql.adaptive.advisoryPartitionSizeInBytes' (default 64MB) when coalescing contiguous shuffle partitions, but adaptively calculate the target size according to the default parallelism of the Spark cluster. The calculated size is usually smaller than the configured target size. This is to maximize the parallelism and avoid performance regression when enabling adaptive query execution. It's recommended to set this config to false and respect the configured target size.,3.2.0], [spark.sql.adaptive.customCostEvaluatorClass,<undefined>,The custom cost evaluator class to be used for adaptive execution. If not being set, Spark will use its own SimpleCostEvaluator by default.,3.2.0], [spark.sql.adaptive.enabled,true,When true, enable adaptive query execution, which re-optimizes the query plan in the middle of query execution, based on accurate runtime statistics.,1.6.0], [spark.sql.adaptive.forceOptimizeSkewedJoin,false,When true, force enable OptimizeSkewedJoin even if it introduces extra shuffle.,3.3.0], [spark.sql.adaptive.localShuffleReader.enabled,true,When true and 'spark.sql.adaptive.enabled' is true, Spark tries to use local shuffle reader to read the shuffle data when the shuffle partitioning is not needed, for example, after converting sort-merge join to broadcast-hash join.,3.0.0], [spark.sql.adaptive.maxShuffledHashJoinLocalMapThreshold,0b,Configures the maximum size in bytes per partition that can be allowed to build local hash map. If this value is not smaller than spark.sql.adaptive.advisoryPartitionSizeInBytes and all the partition size are not larger than this config, join selection prefer to use shuffled hash join instead of sort merge join regardless of the value of spark.sql.join.preferSortMergeJoin.,3.2.0], [spark.sql.adaptive.optimizeSkewsInRebalancePartitions.enabled,true,When true and 'spark.sql.adaptive.enabled' is true, Spark will optimize the skewed shuffle partitions in RebalancePartitions and split them to smaller ones according to the target size (specified by 'spark.sql.adaptive.advisoryPartitionSizeInBytes'), to avoid data skew.,3.2.0], [spark.sql.adaptive.optimizer.excludedRules,<undefined>,Configures a list of rules to be disabled in the adaptive optimizer, in which the rules are specified by their rule names and separated by comma. The optimizer will log the rules that have indeed been excluded.,3.1.0], [spark.sql.adaptive.rebalancePartitionsSmallPartitionFactor,0.2,A partition will be merged during splitting if its size is small than this factor multiply spark.sql.adaptive.advisoryPartitionSizeInBytes.,3.3.0], [spark.sql.adaptive.skewJoin.enabled,true,When true and 'spark.sql.adaptive.enabled' is true, Spark dynamically handles skew in shuffled join (sort-merge and shuffled hash) by splitting (and replicating if needed) skewed partitions.,3.0.0], [spark.sql.adaptive.skewJoin.skewedPartitionFactor,5.0,A partition is considered as skewed if its size is larger than this factor multiplying the median partition size and also larger than 'spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes',3.0.0], [spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes,256MB,A partition is considered as skewed if its size in bytes is larger than this threshold and also larger than 'spark.sql.adaptive.skewJoin.skewedPartitionFactor' multiplying the median partition size. Ideally this config should be set larger than 'spark.sql.adaptive.advisoryPartitionSizeInBytes'.,3.0.0], [spark.sql.allowNamedFunctionArguments,true,If true, Spark will turn on support for named parameters for all functions that has it implemented.,3.5.0], [spark.sql.ansi.doubleQuotedIdentifiers,false,When true and 'spark.sql.ansi.enabled' is true, Spark SQL reads literals enclosed in double quoted (") as identifiers. When false they are read as string literals.,3.4.0], [spark.sql.ansi.enabled,false,When true, Spark SQL uses an ANSI compliant dialect instead of being Hive compliant. For example, Spark will throw an exception at runtime instead of returning null results when the inputs to a SQL operator/function are invalid.For full details of this dialect, you can find them in the section "ANSI Compliance" of Spark's documentation. Some ANSI dialect features may be not from the ANSI SQL standard directly, but their behaviors align with ANSI SQL's style,3.0.0], [spark.sql.ansi.enforceReservedKeywords,false,When true and 'spark.sql.ansi.enabled' is true, the Spark SQL parser enforces the ANSI reserved keywords and forbids SQL queries that use reserved keywords as alias names and/or identifiers for table, view, function, etc.,3.3.0], [spark.sql.ansi.relationPrecedence,false,When true and 'spark.sql.ansi.enabled' is true, JOIN takes precedence over comma when combining relation. For example, `t1, t2 JOIN t3` should result to `t1 X (t2 X t3)`. If the config is false, the result is `(t1 X t2) X t3`.,3.4.0], [spark.sql.autoBroadcastJoinThreshold,10MB,Configures the maximum size in bytes for a table that will be broadcast to all worker nodes when performing a join. By setting this value to -1 broadcasting can be disabled. Note that currently statistics are only supported for Hive Metastore tables where the command `ANALYZE TABLE <tableName> COMPUTE STATISTICS noscan` has been run, and file-based data source tables where the statistics are computed directly on the files of data.,1.1.0], [spark.sql.avro.compression.codec,snappy,Compression codec used in writing of AVRO files. Supported codecs: uncompressed, deflate, snappy, bzip2, xz and zstandard. Default codec is snappy.,2.4.0], ... 183 more fields]
+- SetCommand (-v,None)
== Physical Plan ==
CommandResult [key#2177, value#2178, meaning#2179, Since version#2180]
+- Execute SetCommand
+- SetCommand (-v,None)
|
jonathon
|
|
eeddfd91-109c-4a73-a389-07106b8b68b8
|
2025/06/13 07:55:31
|
2025/06/13 07:55:31
|
2025/06/13 07:55:31
|
258 ms
|
418 ms
|
Listing tables 'catalog : null, schemaPattern : %, tableTypes : null, tableName : %'
|
CLOSED
|
|
jonathon
|
|
24b341de-4aa7-4439-9d38-e87f336daa63
|
2025/06/13 07:55:31
|
2025/06/13 07:55:31
|
2025/06/13 07:55:31
|
49 ms
|
203 ms
|
Listing columns 'catalog : null, schemaPattern : default, tablePattern : airports, columnName : null'
|
CLOSED
|
|
jonathon
|
|
a3f8b679-2dcb-4c49-9921-e22bc5f758a3
|
2025/06/13 07:55:31
|
2025/06/13 07:55:31
|
2025/06/13 07:55:32
|
94 ms
|
250 ms
|
DESCRIBE default.airports
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'DescribeRelation false, [col_name#2202, data_type#2203, comment#2204]
+- 'UnresolvedTableOrView [default, airports], DESCRIBE TABLE, true
== Analyzed Logical Plan ==
col_name: string, data_type: string, comment: string
DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#2202, data_type#2203, comment#2204]
== Optimized Logical Plan ==
CommandResult [col_name#2202, data_type#2203, comment#2204], Execute DescribeTableCommand, [[id,string,null], [type,string,null], [name,string,null], [lat,double,null], [lon,double,null], [elev,double,null], [continent,string,null], [country,string,null], [region,string,null], [city,string,null], [iata,string,null], [code,string,null], [gps,string,null]]
+- DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#2202, data_type#2203, comment#2204]
== Physical Plan ==
CommandResult [col_name#2202, data_type#2203, comment#2204]
+- Execute DescribeTableCommand
+- DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#2202, data_type#2203, comment#2204]
|
jonathon
|
|
8c1d5a44-065a-46f9-89e3-c8f7e342178f
|
2025/06/13 07:55:32
|
2025/06/13 07:55:32
|
2025/06/13 07:55:32
|
96 ms
|
252 ms
|
DESCRIBE default.airports
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'DescribeRelation false, [col_name#2225, data_type#2226, comment#2227]
+- 'UnresolvedTableOrView [default, airports], DESCRIBE TABLE, true
== Analyzed Logical Plan ==
col_name: string, data_type: string, comment: string
DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#2225, data_type#2226, comment#2227]
== Optimized Logical Plan ==
CommandResult [col_name#2225, data_type#2226, comment#2227], Execute DescribeTableCommand, [[id,string,null], [type,string,null], [name,string,null], [lat,double,null], [lon,double,null], [elev,double,null], [continent,string,null], [country,string,null], [region,string,null], [city,string,null], [iata,string,null], [code,string,null], [gps,string,null]]
+- DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#2225, data_type#2226, comment#2227]
== Physical Plan ==
CommandResult [col_name#2225, data_type#2226, comment#2227]
+- Execute DescribeTableCommand
+- DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#2225, data_type#2226, comment#2227]
|
jonathon
|
|
9bb688da-63cc-4516-91e2-55d08768cd7b
|
2025/06/13 07:55:32
|
2025/06/13 07:55:32
|
2025/06/13 07:55:32
|
26 ms
|
182 ms
|
Listing columns 'catalog : null, schemaPattern : default, tablePattern : airports, columnName : null'
|
CLOSED
|
|
jonathon
|
[34]
|
ecb3129b-9429-40bb-b1cd-f300b33f73c0
|
2025/06/13 07:55:32
|
2025/06/13 07:55:32
|
2025/06/13 07:55:32
|
200 ms
|
357 ms
|
SELECT C_43 AS C_12, C_1 AS C_16, C_2 AS C_14, C_4331 AS C_17, C_4332 AS C_13, C_4333 AS C_15, C_8 AS C_19, C_9 AS C_21, C_5 AS C_18, C_6 AS C_20, C_7 AS C_22, C_10 AS C_24, C_11 AS C_23, C_3 AS C_25 FROM (SELECT C_64656661756c745f616972706f727473.`id` AS C_43, C_64656661756c745f616972706f727473.`type` AS C_1, C_64656661756c745f616972706f727473.`name` AS C_2, C_64656661756c745f616972706f727473.`lat` AS C_4, C_64656661756c745f616972706f727473.`lon` AS C_0, C_64656661756c745f616972706f727473.`elev` AS C_3, C_64656661756c745f616972706f727473.`continent` AS C_8, C_64656661756c745f616972706f727473.`country` AS C_9, C_64656661756c745f616972706f727473.`region` AS C_5, C_64656661756c745f616972706f727473.`city` AS C_6, C_64656661756c745f616972706f727473.`iata` AS C_7, C_64656661756c745f616972706f727473.`code` AS C_10, C_64656661756c745f616972706f727473.`gps` AS C_11, (round((C_64656661756c745f616972706f727473.`lat` * power(1.000000000000000E+001, 3)), 0) / power(1.000000000000000E+001, 3)) AS C_4331, (round((C_64656661756c745f616972706f727473.`lon` * power(1.000000000000000E+001, 3)), 0) / power(1.000000000000000E+001, 3)) AS C_4332, (round((C_64656661756c745f616972706f727473.`elev` * power(1.000000000000000E+001, 3)), 0) / power(1.000000000000000E+001, 3)) AS C_4333 FROM `default`.`airports` C_64656661756c745f616972706f727473 WHERE ((C_64656661756c745f616972706f727473.`lon` <= (- 1.040500000000000E+002)) AND (C_64656661756c745f616972706f727473.`lon` >= (- 1.110500000000000E+002)) AND (C_64656661756c745f616972706f727473.`lat` >= 4.100000000000000E+001) AND (C_64656661756c745f616972706f727473.`lat` <= 4.500000000000000E+001)) ) C_4954424c ORDER BY C_25 DESC LIMIT 5
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'GlobalLimit 5
+- 'LocalLimit 5
+- 'Sort ['C_25 DESC NULLS LAST], true
+- 'Project ['C_43 AS C_12#2264, 'C_1 AS C_16#2265, 'C_2 AS C_14#2266, 'C_4331 AS C_17#2267, 'C_4332 AS C_13#2268, 'C_4333 AS C_15#2269, 'C_8 AS C_19#2270, 'C_9 AS C_21#2271, 'C_5 AS C_18#2272, 'C_6 AS C_20#2273, 'C_7 AS C_22#2274, 'C_10 AS C_24#2275, 'C_11 AS C_23#2276, 'C_3 AS C_25#2277]
+- 'SubqueryAlias C_4954424c
+- 'Project ['C_64656661756c745f616972706f727473.id AS C_43#2248, 'C_64656661756c745f616972706f727473.type AS C_1#2249, 'C_64656661756c745f616972706f727473.name AS C_2#2250, 'C_64656661756c745f616972706f727473.lat AS C_4#2251, 'C_64656661756c745f616972706f727473.lon AS C_0#2252, 'C_64656661756c745f616972706f727473.elev AS C_3#2253, 'C_64656661756c745f616972706f727473.continent AS C_8#2254, 'C_64656661756c745f616972706f727473.country AS C_9#2255, 'C_64656661756c745f616972706f727473.region AS C_5#2256, 'C_64656661756c745f616972706f727473.city AS C_6#2257, 'C_64656661756c745f616972706f727473.iata AS C_7#2258, 'C_64656661756c745f616972706f727473.code AS C_10#2259, 'C_64656661756c745f616972706f727473.gps AS C_11#2260, ('round(('C_64656661756c745f616972706f727473.lat * 'power(10.0, 3)), 0) / 'power(10.0, 3)) AS C_4331#2261, ('round(('C_64656661756c745f616972706f727473.lon * 'power(10.0, 3)), 0) / 'power(10.0, 3)) AS C_4332#2262, ('round(('C_64656661756c745f616972706f727473.elev * 'power(10.0, 3)), 0) / 'power(10.0, 3)) AS C_4333#2263]
+- 'Filter ((('C_64656661756c745f616972706f727473.lon <= -104.05) AND ('C_64656661756c745f616972706f727473.lon >= -111.05)) AND (('C_64656661756c745f616972706f727473.lat >= 41.0) AND ('C_64656661756c745f616972706f727473.lat <= 45.0)))
+- 'SubqueryAlias C_64656661756c745f616972706f727473
+- 'UnresolvedRelation [default, airports], [], false
== Analyzed Logical Plan ==
C_12: string, C_16: string, C_14: string, C_17: double, C_13: double, C_15: double, C_19: string, C_21: string, C_18: string, C_20: string, C_22: string, C_24: string, C_23: string, C_25: double
GlobalLimit 5
+- LocalLimit 5
+- Sort [C_25#2277 DESC NULLS LAST], true
+- Project [C_43#2248 AS C_12#2264, C_1#2249 AS C_16#2265, C_2#2250 AS C_14#2266, C_4331#2261 AS C_17#2267, C_4332#2262 AS C_13#2268, C_4333#2263 AS C_15#2269, C_8#2254 AS C_19#2270, C_9#2255 AS C_21#2271, C_5#2256 AS C_18#2272, C_6#2257 AS C_20#2273, C_7#2258 AS C_22#2274, C_10#2259 AS C_24#2275, C_11#2260 AS C_23#2276, C_3#2253 AS C_25#2277]
+- SubqueryAlias C_4954424c
+- Project [id#2278 AS C_43#2248, type#2279 AS C_1#2249, name#2280 AS C_2#2250, lat#2281 AS C_4#2251, lon#2282 AS C_0#2252, elev#2283 AS C_3#2253, continent#2284 AS C_8#2254, country#2285 AS C_9#2255, region#2286 AS C_5#2256, city#2287 AS C_6#2257, iata#2288 AS C_7#2258, code#2289 AS C_10#2259, gps#2290 AS C_11#2260, (round((lat#2281 * POWER(10.0, cast(3 as double))), 0) / POWER(10.0, cast(3 as double))) AS C_4331#2261, (round((lon#2282 * POWER(10.0, cast(3 as double))), 0) / POWER(10.0, cast(3 as double))) AS C_4332#2262, (round((elev#2283 * POWER(10.0, cast(3 as double))), 0) / POWER(10.0, cast(3 as double))) AS C_4333#2263]
+- Filter (((lon#2282 <= -104.05) AND (lon#2282 >= -111.05)) AND ((lat#2281 >= 41.0) AND (lat#2281 <= 45.0)))
+- SubqueryAlias C_64656661756c745f616972706f727473
+- SubqueryAlias spark_catalog.default.airports
+- Relation spark_catalog.default.airports[id#2278,type#2279,name#2280,lat#2281,lon#2282,elev#2283,continent#2284,country#2285,region#2286,city#2287,iata#2288,code#2289,gps#2290] parquet
== Optimized Logical Plan ==
GlobalLimit 5
+- LocalLimit 5
+- Sort [C_25#2277 DESC NULLS LAST], true
+- Project [id#2278 AS C_12#2264, type#2279 AS C_16#2265, name#2280 AS C_14#2266, (round((lat#2281 * 1000.0), 0) / 1000.0) AS C_17#2267, (round((lon#2282 * 1000.0), 0) / 1000.0) AS C_13#2268, (round((elev#2283 * 1000.0), 0) / 1000.0) AS C_15#2269, continent#2284 AS C_19#2270, country#2285 AS C_21#2271, region#2286 AS C_18#2272, city#2287 AS C_20#2273, iata#2288 AS C_22#2274, code#2289 AS C_24#2275, gps#2290 AS C_23#2276, elev#2283 AS C_25#2277]
+- Filter ((isnotnull(lon#2282) AND isnotnull(lat#2281)) AND (((lon#2282 <= -104.05) AND (lon#2282 >= -111.05)) AND ((lat#2281 >= 41.0) AND (lat#2281 <= 45.0))))
+- Relation spark_catalog.default.airports[id#2278,type#2279,name#2280,lat#2281,lon#2282,elev#2283,continent#2284,country#2285,region#2286,city#2287,iata#2288,code#2289,gps#2290] parquet
== Physical Plan ==
TakeOrderedAndProject(limit=5, orderBy=[C_25#2277 DESC NULLS LAST], output=[C_12#2264,C_16#2265,C_14#2266,C_17#2267,C_13#2268,C_15#2269,C_19#2270,C_21#2271,C_18#2272,C_20#2273,C_22#2274,C_24#2275,C_23#2276,C_25#2277])
+- *(1) Project [id#2278 AS C_12#2264, type#2279 AS C_16#2265, name#2280 AS C_14#2266, (round((lat#2281 * 1000.0), 0) / 1000.0) AS C_17#2267, (round((lon#2282 * 1000.0), 0) / 1000.0) AS C_13#2268, (round((elev#2283 * 1000.0), 0) / 1000.0) AS C_15#2269, continent#2284 AS C_19#2270, country#2285 AS C_21#2271, region#2286 AS C_18#2272, city#2287 AS C_20#2273, iata#2288 AS C_22#2274, code#2289 AS C_24#2275, gps#2290 AS C_23#2276, elev#2283 AS C_25#2277]
+- *(1) Filter (((((isnotnull(lon#2282) AND isnotnull(lat#2281)) AND (lon#2282 <= -104.05)) AND (lon#2282 >= -111.05)) AND (lat#2281 >= 41.0)) AND (lat#2281 <= 45.0))
+- *(1) ColumnarToRow
+- FileScan parquet spark_catalog.default.airports[id#2278,type#2279,name#2280,lat#2281,lon#2282,elev#2283,continent#2284,country#2285,region#2286,city#2287,iata#2288,code#2289,gps#2290] Batched: true, DataFilters: [isnotnull(lon#2282), isnotnull(lat#2281), (lon#2282 <= -104.05), (lon#2282 >= -111.05), (lat#228..., Format: Parquet, Location: InMemoryFileIndex(1 paths)[file:/home/acdcadmin/spark-warehouse/airports], PartitionFilters: [], PushedFilters: [IsNotNull(lon), IsNotNull(lat), LessThanOrEqual(lon,-104.05), GreaterThanOrEqual(lon,-111.05), G..., ReadSchema: struct<id:string,type:string,name:string,lat:double,lon:double,elev:double,continent:string,count...
|
jonathan
|
|
cfe9ec7e-8e1d-480c-ae46-74da9249f1e5
|
2025/06/13 19:06:15
|
2025/06/13 19:06:15
|
2025/06/13 19:06:16
|
102 ms
|
506 ms
|
DESCRIBE TABLE `default`.`alltypes`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'DescribeRelation false, [col_name#2321, data_type#2322, comment#2323]
+- 'UnresolvedTableOrView [default, alltypes], DESCRIBE TABLE, true
== Analyzed Logical Plan ==
col_name: string, data_type: string, comment: string
DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#2321, data_type#2322, comment#2323]
== Optimized Logical Plan ==
CommandResult [col_name#2321, data_type#2322, comment#2323], Execute DescribeTableCommand, [[STRING,string,null], [DOUBLE,double,null], [INTEGER,int,null], [BIGINT,bigint,null], [FLOAT,float,null], [DECIMAL,decimal(10,2),null], [NUMBER,decimal(10,2),null], [BOOLEAN,boolean,null], [DATE,date,null], [TIMESTAMP,timestamp,null], [DATETIME,timestamp,null], [BINARY,binary,null], [ARRAY,array<int>,null], [MAP,map<string,string>,null], [STRUCT,struct<field1:string,field2:int>,null], [VARCHAR,string,null], [CHAR,string,null]]
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#2321, data_type#2322, comment#2323]
== Physical Plan ==
CommandResult [col_name#2321, data_type#2322, comment#2323]
+- Execute DescribeTableCommand
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#2321, data_type#2322, comment#2323]
|
jonathan
|
|
99bce643-8f66-49d0-b4e2-aed90b373daf
|
2025/06/13 19:06:16
|
2025/06/13 19:06:16
|
2025/06/13 19:06:16
|
77 ms
|
369 ms
|
DESCRIBE TABLE `default`.`alltypes`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'DescribeRelation false, [col_name#2348, data_type#2349, comment#2350]
+- 'UnresolvedTableOrView [default, alltypes], DESCRIBE TABLE, true
== Analyzed Logical Plan ==
col_name: string, data_type: string, comment: string
DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#2348, data_type#2349, comment#2350]
== Optimized Logical Plan ==
CommandResult [col_name#2348, data_type#2349, comment#2350], Execute DescribeTableCommand, [[STRING,string,null], [DOUBLE,double,null], [INTEGER,int,null], [BIGINT,bigint,null], [FLOAT,float,null], [DECIMAL,decimal(10,2),null], [NUMBER,decimal(10,2),null], [BOOLEAN,boolean,null], [DATE,date,null], [TIMESTAMP,timestamp,null], [DATETIME,timestamp,null], [BINARY,binary,null], [ARRAY,array<int>,null], [MAP,map<string,string>,null], [STRUCT,struct<field1:string,field2:int>,null], [VARCHAR,string,null], [CHAR,string,null]]
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#2348, data_type#2349, comment#2350]
== Physical Plan ==
CommandResult [col_name#2348, data_type#2349, comment#2350]
+- Execute DescribeTableCommand
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#2348, data_type#2349, comment#2350]
|
jonathan
|
|
b1e0a82c-ad1c-4482-ad28-c7e18781b437
|
2025/06/13 19:06:30
|
2025/06/13 19:06:30
|
2025/06/13 19:06:30
|
97 ms
|
368 ms
|
DESCRIBE TABLE `default`.`alltypes`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'DescribeRelation false, [col_name#2375, data_type#2376, comment#2377]
+- 'UnresolvedTableOrView [default, alltypes], DESCRIBE TABLE, true
== Analyzed Logical Plan ==
col_name: string, data_type: string, comment: string
DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#2375, data_type#2376, comment#2377]
== Optimized Logical Plan ==
CommandResult [col_name#2375, data_type#2376, comment#2377], Execute DescribeTableCommand, [[STRING,string,null], [DOUBLE,double,null], [INTEGER,int,null], [BIGINT,bigint,null], [FLOAT,float,null], [DECIMAL,decimal(10,2),null], [NUMBER,decimal(10,2),null], [BOOLEAN,boolean,null], [DATE,date,null], [TIMESTAMP,timestamp,null], [DATETIME,timestamp,null], [BINARY,binary,null], [ARRAY,array<int>,null], [MAP,map<string,string>,null], [STRUCT,struct<field1:string,field2:int>,null], [VARCHAR,string,null], [CHAR,string,null]]
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#2375, data_type#2376, comment#2377]
== Physical Plan ==
CommandResult [col_name#2375, data_type#2376, comment#2377]
+- Execute DescribeTableCommand
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#2375, data_type#2376, comment#2377]
|
jonathan
|
|
89b27579-c655-44ef-bf92-6c4bd6c1d8d5
|
2025/06/13 19:06:30
|
2025/06/13 19:06:30
|
2025/06/13 19:06:30
|
86 ms
|
355 ms
|
DESCRIBE TABLE `default`.`alltypes`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'DescribeRelation false, [col_name#2402, data_type#2403, comment#2404]
+- 'UnresolvedTableOrView [default, alltypes], DESCRIBE TABLE, true
== Analyzed Logical Plan ==
col_name: string, data_type: string, comment: string
DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#2402, data_type#2403, comment#2404]
== Optimized Logical Plan ==
CommandResult [col_name#2402, data_type#2403, comment#2404], Execute DescribeTableCommand, [[STRING,string,null], [DOUBLE,double,null], [INTEGER,int,null], [BIGINT,bigint,null], [FLOAT,float,null], [DECIMAL,decimal(10,2),null], [NUMBER,decimal(10,2),null], [BOOLEAN,boolean,null], [DATE,date,null], [TIMESTAMP,timestamp,null], [DATETIME,timestamp,null], [BINARY,binary,null], [ARRAY,array<int>,null], [MAP,map<string,string>,null], [STRUCT,struct<field1:string,field2:int>,null], [VARCHAR,string,null], [CHAR,string,null]]
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#2402, data_type#2403, comment#2404]
== Physical Plan ==
CommandResult [col_name#2402, data_type#2403, comment#2404]
+- Execute DescribeTableCommand
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#2402, data_type#2403, comment#2404]
|
jonathon
|
|
089371d8-0d89-489e-bad8-9288df1edeee
|
2025/06/13 22:18:17
|
2025/06/13 22:18:17
|
2025/06/13 22:18:17
|
42 ms
|
184 ms
|
set -v
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
SetCommand (-v,None)
== Analyzed Logical Plan ==
key: string, value: string, meaning: string, Since version: string
SetCommand (-v,None)
== Optimized Logical Plan ==
CommandResult [key#2429, value#2430, meaning#2431, Since version#2432], Execute SetCommand, [[spark.sql.adaptive.advisoryPartitionSizeInBytes,<value of spark.sql.adaptive.shuffle.targetPostShuffleInputSize>,The advisory size in bytes of the shuffle partition during adaptive optimization (when spark.sql.adaptive.enabled is true). It takes effect when Spark coalesces small shuffle partitions or splits skewed shuffle partition.,3.0.0], [spark.sql.adaptive.autoBroadcastJoinThreshold,<undefined>,Configures the maximum size in bytes for a table that will be broadcast to all worker nodes when performing a join. By setting this value to -1 broadcasting can be disabled. The default value is same with spark.sql.autoBroadcastJoinThreshold. Note that, this config is used only in adaptive framework.,3.2.0], [spark.sql.adaptive.coalescePartitions.enabled,true,When true and 'spark.sql.adaptive.enabled' is true, Spark will coalesce contiguous shuffle partitions according to the target size (specified by 'spark.sql.adaptive.advisoryPartitionSizeInBytes'), to avoid too many small tasks.,3.0.0], [spark.sql.adaptive.coalescePartitions.initialPartitionNum,<undefined>,The initial number of shuffle partitions before coalescing. If not set, it equals to spark.sql.shuffle.partitions. This configuration only has an effect when 'spark.sql.adaptive.enabled' and 'spark.sql.adaptive.coalescePartitions.enabled' are both true.,3.0.0], [spark.sql.adaptive.coalescePartitions.minPartitionSize,1MB,The minimum size of shuffle partitions after coalescing. This is useful when the adaptively calculated target size is too small during partition coalescing.,3.2.0], [spark.sql.adaptive.coalescePartitions.parallelismFirst,true,When true, Spark does not respect the target size specified by 'spark.sql.adaptive.advisoryPartitionSizeInBytes' (default 64MB) when coalescing contiguous shuffle partitions, but adaptively calculate the target size according to the default parallelism of the Spark cluster. The calculated size is usually smaller than the configured target size. This is to maximize the parallelism and avoid performance regression when enabling adaptive query execution. It's recommended to set this config to false and respect the configured target size.,3.2.0], [spark.sql.adaptive.customCostEvaluatorClass,<undefined>,The custom cost evaluator class to be used for adaptive execution. If not being set, Spark will use its own SimpleCostEvaluator by default.,3.2.0], [spark.sql.adaptive.enabled,true,When true, enable adaptive query execution, which re-optimizes the query plan in the middle of query execution, based on accurate runtime statistics.,1.6.0], [spark.sql.adaptive.forceOptimizeSkewedJoin,false,When true, force enable OptimizeSkewedJoin even if it introduces extra shuffle.,3.3.0], [spark.sql.adaptive.localShuffleReader.enabled,true,When true and 'spark.sql.adaptive.enabled' is true, Spark tries to use local shuffle reader to read the shuffle data when the shuffle partitioning is not needed, for example, after converting sort-merge join to broadcast-hash join.,3.0.0], [spark.sql.adaptive.maxShuffledHashJoinLocalMapThreshold,0b,Configures the maximum size in bytes per partition that can be allowed to build local hash map. If this value is not smaller than spark.sql.adaptive.advisoryPartitionSizeInBytes and all the partition size are not larger than this config, join selection prefer to use shuffled hash join instead of sort merge join regardless of the value of spark.sql.join.preferSortMergeJoin.,3.2.0], [spark.sql.adaptive.optimizeSkewsInRebalancePartitions.enabled,true,When true and 'spark.sql.adaptive.enabled' is true, Spark will optimize the skewed shuffle partitions in RebalancePartitions and split them to smaller ones according to the target size (specified by 'spark.sql.adaptive.advisoryPartitionSizeInBytes'), to avoid data skew.,3.2.0], [spark.sql.adaptive.optimizer.excludedRules,<undefined>,Configures a list of rules to be disabled in the adaptive optimizer, in which the rules are specified by their rule names and separated by comma. The optimizer will log the rules that have indeed been excluded.,3.1.0], [spark.sql.adaptive.rebalancePartitionsSmallPartitionFactor,0.2,A partition will be merged during splitting if its size is small than this factor multiply spark.sql.adaptive.advisoryPartitionSizeInBytes.,3.3.0], [spark.sql.adaptive.skewJoin.enabled,true,When true and 'spark.sql.adaptive.enabled' is true, Spark dynamically handles skew in shuffled join (sort-merge and shuffled hash) by splitting (and replicating if needed) skewed partitions.,3.0.0], [spark.sql.adaptive.skewJoin.skewedPartitionFactor,5.0,A partition is considered as skewed if its size is larger than this factor multiplying the median partition size and also larger than 'spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes',3.0.0], [spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes,256MB,A partition is considered as skewed if its size in bytes is larger than this threshold and also larger than 'spark.sql.adaptive.skewJoin.skewedPartitionFactor' multiplying the median partition size. Ideally this config should be set larger than 'spark.sql.adaptive.advisoryPartitionSizeInBytes'.,3.0.0], [spark.sql.allowNamedFunctionArguments,true,If true, Spark will turn on support for named parameters for all functions that has it implemented.,3.5.0], [spark.sql.ansi.doubleQuotedIdentifiers,false,When true and 'spark.sql.ansi.enabled' is true, Spark SQL reads literals enclosed in double quoted (") as identifiers. When false they are read as string literals.,3.4.0], [spark.sql.ansi.enabled,false,When true, Spark SQL uses an ANSI compliant dialect instead of being Hive compliant. For example, Spark will throw an exception at runtime instead of returning null results when the inputs to a SQL operator/function are invalid.For full details of this dialect, you can find them in the section "ANSI Compliance" of Spark's documentation. Some ANSI dialect features may be not from the ANSI SQL standard directly, but their behaviors align with ANSI SQL's style,3.0.0], [spark.sql.ansi.enforceReservedKeywords,false,When true and 'spark.sql.ansi.enabled' is true, the Spark SQL parser enforces the ANSI reserved keywords and forbids SQL queries that use reserved keywords as alias names and/or identifiers for table, view, function, etc.,3.3.0], [spark.sql.ansi.relationPrecedence,false,When true and 'spark.sql.ansi.enabled' is true, JOIN takes precedence over comma when combining relation. For example, `t1, t2 JOIN t3` should result to `t1 X (t2 X t3)`. If the config is false, the result is `(t1 X t2) X t3`.,3.4.0], [spark.sql.autoBroadcastJoinThreshold,10MB,Configures the maximum size in bytes for a table that will be broadcast to all worker nodes when performing a join. By setting this value to -1 broadcasting can be disabled. Note that currently statistics are only supported for Hive Metastore tables where the command `ANALYZE TABLE <tableName> COMPUTE STATISTICS noscan` has been run, and file-based data source tables where the statistics are computed directly on the files of data.,1.1.0], [spark.sql.avro.compression.codec,snappy,Compression codec used in writing of AVRO files. Supported codecs: uncompressed, deflate, snappy, bzip2, xz and zstandard. Default codec is snappy.,2.4.0], ... 183 more fields]
+- SetCommand (-v,None)
== Physical Plan ==
CommandResult [key#2429, value#2430, meaning#2431, Since version#2432]
+- Execute SetCommand
+- SetCommand (-v,None)
|
jonathon
|
|
3f361a2e-254f-4c9f-b8c0-14c65350c9b4
|
2025/06/13 22:18:17
|
2025/06/13 22:18:17
|
2025/06/13 22:18:18
|
221 ms
|
319 ms
|
Listing tables 'catalog : null, schemaPattern : %, tableTypes : null, tableName : %'
|
CLOSED
|
|
jonathon
|
|
4c448d36-25b1-4d61-b0d9-616170b9ed52
|
2025/06/13 22:18:18
|
2025/06/13 22:18:18
|
2025/06/13 22:18:18
|
55 ms
|
150 ms
|
Listing columns 'catalog : null, schemaPattern : default, tablePattern : airports, columnName : null'
|
CLOSED
|
|
jonathon
|
|
0db6a993-9167-493d-8567-f01d986d02b8
|
2025/06/13 22:18:18
|
2025/06/13 22:18:18
|
2025/06/13 22:18:18
|
87 ms
|
186 ms
|
DESCRIBE default.airports
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'DescribeRelation false, [col_name#2454, data_type#2455, comment#2456]
+- 'UnresolvedTableOrView [default, airports], DESCRIBE TABLE, true
== Analyzed Logical Plan ==
col_name: string, data_type: string, comment: string
DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#2454, data_type#2455, comment#2456]
== Optimized Logical Plan ==
CommandResult [col_name#2454, data_type#2455, comment#2456], Execute DescribeTableCommand, [[id,string,null], [type,string,null], [name,string,null], [lat,double,null], [lon,double,null], [elev,double,null], [continent,string,null], [country,string,null], [region,string,null], [city,string,null], [iata,string,null], [code,string,null], [gps,string,null]]
+- DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#2454, data_type#2455, comment#2456]
== Physical Plan ==
CommandResult [col_name#2454, data_type#2455, comment#2456]
+- Execute DescribeTableCommand
+- DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#2454, data_type#2455, comment#2456]
|
jonathon
|
|
4192f023-f7e5-410d-a4aa-e154595bddb8
|
2025/06/13 22:18:18
|
2025/06/13 22:18:18
|
2025/06/13 22:18:18
|
90 ms
|
196 ms
|
DESCRIBE default.airports
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'DescribeRelation false, [col_name#2477, data_type#2478, comment#2479]
+- 'UnresolvedTableOrView [default, airports], DESCRIBE TABLE, true
== Analyzed Logical Plan ==
col_name: string, data_type: string, comment: string
DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#2477, data_type#2478, comment#2479]
== Optimized Logical Plan ==
CommandResult [col_name#2477, data_type#2478, comment#2479], Execute DescribeTableCommand, [[id,string,null], [type,string,null], [name,string,null], [lat,double,null], [lon,double,null], [elev,double,null], [continent,string,null], [country,string,null], [region,string,null], [city,string,null], [iata,string,null], [code,string,null], [gps,string,null]]
+- DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#2477, data_type#2478, comment#2479]
== Physical Plan ==
CommandResult [col_name#2477, data_type#2478, comment#2479]
+- Execute DescribeTableCommand
+- DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#2477, data_type#2478, comment#2479]
|
jonathon
|
|
680ed7d0-342a-4620-b3a1-2f57b0058141
|
2025/06/13 22:18:18
|
2025/06/13 22:18:18
|
2025/06/13 22:18:18
|
27 ms
|
122 ms
|
Listing columns 'catalog : null, schemaPattern : default, tablePattern : airports, columnName : null'
|
CLOSED
|
|
jonathon
|
[35]
|
8941a51a-eff4-4b55-b556-60fcfdad821f
|
2025/06/13 22:18:18
|
2025/06/13 22:18:19
|
2025/06/13 22:18:19
|
267 ms
|
366 ms
|
SELECT C_3 AS C_18, C_0 AS C_12, C_4 AS C_19, C_4331 AS C_14, C_4332 AS C_17, C_4333 AS C_22, C_7 AS C_23, C_8 AS C_15, C_9 AS C_20, C_10 AS C_16, C_43 AS C_25, C_2 AS C_13, C_11 AS C_24, C_1 AS C_21 FROM (SELECT C_64656661756c745f616972706f727473.`id` AS C_3, C_64656661756c745f616972706f727473.`type` AS C_0, C_64656661756c745f616972706f727473.`name` AS C_4, C_64656661756c745f616972706f727473.`lat` AS C_5, C_64656661756c745f616972706f727473.`lon` AS C_6, C_64656661756c745f616972706f727473.`elev` AS C_1, C_64656661756c745f616972706f727473.`continent` AS C_7, C_64656661756c745f616972706f727473.`country` AS C_8, C_64656661756c745f616972706f727473.`region` AS C_9, C_64656661756c745f616972706f727473.`city` AS C_10, C_64656661756c745f616972706f727473.`iata` AS C_43, C_64656661756c745f616972706f727473.`code` AS C_2, C_64656661756c745f616972706f727473.`gps` AS C_11, (round((C_64656661756c745f616972706f727473.`lat` * power(1.000000000000000E+001, 3)), 0) / power(1.000000000000000E+001, 3)) AS C_4331, (round((C_64656661756c745f616972706f727473.`lon` * power(1.000000000000000E+001, 3)), 0) / power(1.000000000000000E+001, 3)) AS C_4332, (round((C_64656661756c745f616972706f727473.`elev` * power(1.000000000000000E+001, 3)), 0) / power(1.000000000000000E+001, 3)) AS C_4333 FROM `default`.`airports` C_64656661756c745f616972706f727473 WHERE ((C_64656661756c745f616972706f727473.`lon` <= (- 1.040500000000000E+002)) AND (C_64656661756c745f616972706f727473.`lon` >= (- 1.110500000000000E+002)) AND (C_64656661756c745f616972706f727473.`lat` >= 4.100000000000000E+001) AND (C_64656661756c745f616972706f727473.`lat` <= 4.500000000000000E+001)) ) C_4954424c ORDER BY C_21 DESC LIMIT 5
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'GlobalLimit 5
+- 'LocalLimit 5
+- 'Sort ['C_21 DESC NULLS LAST], true
+- 'Project ['C_3 AS C_18#2516, 'C_0 AS C_12#2517, 'C_4 AS C_19#2518, 'C_4331 AS C_14#2519, 'C_4332 AS C_17#2520, 'C_4333 AS C_22#2521, 'C_7 AS C_23#2522, 'C_8 AS C_15#2523, 'C_9 AS C_20#2524, 'C_10 AS C_16#2525, 'C_43 AS C_25#2526, 'C_2 AS C_13#2527, 'C_11 AS C_24#2528, 'C_1 AS C_21#2529]
+- 'SubqueryAlias C_4954424c
+- 'Project ['C_64656661756c745f616972706f727473.id AS C_3#2500, 'C_64656661756c745f616972706f727473.type AS C_0#2501, 'C_64656661756c745f616972706f727473.name AS C_4#2502, 'C_64656661756c745f616972706f727473.lat AS C_5#2503, 'C_64656661756c745f616972706f727473.lon AS C_6#2504, 'C_64656661756c745f616972706f727473.elev AS C_1#2505, 'C_64656661756c745f616972706f727473.continent AS C_7#2506, 'C_64656661756c745f616972706f727473.country AS C_8#2507, 'C_64656661756c745f616972706f727473.region AS C_9#2508, 'C_64656661756c745f616972706f727473.city AS C_10#2509, 'C_64656661756c745f616972706f727473.iata AS C_43#2510, 'C_64656661756c745f616972706f727473.code AS C_2#2511, 'C_64656661756c745f616972706f727473.gps AS C_11#2512, ('round(('C_64656661756c745f616972706f727473.lat * 'power(10.0, 3)), 0) / 'power(10.0, 3)) AS C_4331#2513, ('round(('C_64656661756c745f616972706f727473.lon * 'power(10.0, 3)), 0) / 'power(10.0, 3)) AS C_4332#2514, ('round(('C_64656661756c745f616972706f727473.elev * 'power(10.0, 3)), 0) / 'power(10.0, 3)) AS C_4333#2515]
+- 'Filter ((('C_64656661756c745f616972706f727473.lon <= -104.05) AND ('C_64656661756c745f616972706f727473.lon >= -111.05)) AND (('C_64656661756c745f616972706f727473.lat >= 41.0) AND ('C_64656661756c745f616972706f727473.lat <= 45.0)))
+- 'SubqueryAlias C_64656661756c745f616972706f727473
+- 'UnresolvedRelation [default, airports], [], false
== Analyzed Logical Plan ==
C_18: string, C_12: string, C_19: string, C_14: double, C_17: double, C_22: double, C_23: string, C_15: string, C_20: string, C_16: string, C_25: string, C_13: string, C_24: string, C_21: double
GlobalLimit 5
+- LocalLimit 5
+- Sort [C_21#2529 DESC NULLS LAST], true
+- Project [C_3#2500 AS C_18#2516, C_0#2501 AS C_12#2517, C_4#2502 AS C_19#2518, C_4331#2513 AS C_14#2519, C_4332#2514 AS C_17#2520, C_4333#2515 AS C_22#2521, C_7#2506 AS C_23#2522, C_8#2507 AS C_15#2523, C_9#2508 AS C_20#2524, C_10#2509 AS C_16#2525, C_43#2510 AS C_25#2526, C_2#2511 AS C_13#2527, C_11#2512 AS C_24#2528, C_1#2505 AS C_21#2529]
+- SubqueryAlias C_4954424c
+- Project [id#2530 AS C_3#2500, type#2531 AS C_0#2501, name#2532 AS C_4#2502, lat#2533 AS C_5#2503, lon#2534 AS C_6#2504, elev#2535 AS C_1#2505, continent#2536 AS C_7#2506, country#2537 AS C_8#2507, region#2538 AS C_9#2508, city#2539 AS C_10#2509, iata#2540 AS C_43#2510, code#2541 AS C_2#2511, gps#2542 AS C_11#2512, (round((lat#2533 * POWER(10.0, cast(3 as double))), 0) / POWER(10.0, cast(3 as double))) AS C_4331#2513, (round((lon#2534 * POWER(10.0, cast(3 as double))), 0) / POWER(10.0, cast(3 as double))) AS C_4332#2514, (round((elev#2535 * POWER(10.0, cast(3 as double))), 0) / POWER(10.0, cast(3 as double))) AS C_4333#2515]
+- Filter (((lon#2534 <= -104.05) AND (lon#2534 >= -111.05)) AND ((lat#2533 >= 41.0) AND (lat#2533 <= 45.0)))
+- SubqueryAlias C_64656661756c745f616972706f727473
+- SubqueryAlias spark_catalog.default.airports
+- Relation spark_catalog.default.airports[id#2530,type#2531,name#2532,lat#2533,lon#2534,elev#2535,continent#2536,country#2537,region#2538,city#2539,iata#2540,code#2541,gps#2542] parquet
== Optimized Logical Plan ==
GlobalLimit 5
+- LocalLimit 5
+- Sort [C_21#2529 DESC NULLS LAST], true
+- Project [id#2530 AS C_18#2516, type#2531 AS C_12#2517, name#2532 AS C_19#2518, (round((lat#2533 * 1000.0), 0) / 1000.0) AS C_14#2519, (round((lon#2534 * 1000.0), 0) / 1000.0) AS C_17#2520, (round((elev#2535 * 1000.0), 0) / 1000.0) AS C_22#2521, continent#2536 AS C_23#2522, country#2537 AS C_15#2523, region#2538 AS C_20#2524, city#2539 AS C_16#2525, iata#2540 AS C_25#2526, code#2541 AS C_13#2527, gps#2542 AS C_24#2528, elev#2535 AS C_21#2529]
+- Filter ((isnotnull(lon#2534) AND isnotnull(lat#2533)) AND (((lon#2534 <= -104.05) AND (lon#2534 >= -111.05)) AND ((lat#2533 >= 41.0) AND (lat#2533 <= 45.0))))
+- Relation spark_catalog.default.airports[id#2530,type#2531,name#2532,lat#2533,lon#2534,elev#2535,continent#2536,country#2537,region#2538,city#2539,iata#2540,code#2541,gps#2542] parquet
== Physical Plan ==
TakeOrderedAndProject(limit=5, orderBy=[C_21#2529 DESC NULLS LAST], output=[C_18#2516,C_12#2517,C_19#2518,C_14#2519,C_17#2520,C_22#2521,C_23#2522,C_15#2523,C_20#2524,C_16#2525,C_25#2526,C_13#2527,C_24#2528,C_21#2529])
+- *(1) Project [id#2530 AS C_18#2516, type#2531 AS C_12#2517, name#2532 AS C_19#2518, (round((lat#2533 * 1000.0), 0) / 1000.0) AS C_14#2519, (round((lon#2534 * 1000.0), 0) / 1000.0) AS C_17#2520, (round((elev#2535 * 1000.0), 0) / 1000.0) AS C_22#2521, continent#2536 AS C_23#2522, country#2537 AS C_15#2523, region#2538 AS C_20#2524, city#2539 AS C_16#2525, iata#2540 AS C_25#2526, code#2541 AS C_13#2527, gps#2542 AS C_24#2528, elev#2535 AS C_21#2529]
+- *(1) Filter (((((isnotnull(lon#2534) AND isnotnull(lat#2533)) AND (lon#2534 <= -104.05)) AND (lon#2534 >= -111.05)) AND (lat#2533 >= 41.0)) AND (lat#2533 <= 45.0))
+- *(1) ColumnarToRow
+- FileScan parquet spark_catalog.default.airports[id#2530,type#2531,name#2532,lat#2533,lon#2534,elev#2535,continent#2536,country#2537,region#2538,city#2539,iata#2540,code#2541,gps#2542] Batched: true, DataFilters: [isnotnull(lon#2534), isnotnull(lat#2533), (lon#2534 <= -104.05), (lon#2534 >= -111.05), (lat#253..., Format: Parquet, Location: InMemoryFileIndex(1 paths)[file:/home/acdcadmin/spark-warehouse/airports], PartitionFilters: [], PushedFilters: [IsNotNull(lon), IsNotNull(lat), LessThanOrEqual(lon,-104.05), GreaterThanOrEqual(lon,-111.05), G..., ReadSchema: struct<id:string,type:string,name:string,lat:double,lon:double,elev:double,continent:string,count...
|
jonathon
|
|
43a87bef-72a9-4d8b-94b3-ae38d5701de3
|
2025/06/13 22:37:47
|
2025/06/13 22:37:47
|
2025/06/13 22:37:47
|
45 ms
|
182 ms
|
set -v
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
SetCommand (-v,None)
== Analyzed Logical Plan ==
key: string, value: string, meaning: string, Since version: string
SetCommand (-v,None)
== Optimized Logical Plan ==
CommandResult [key#2573, value#2574, meaning#2575, Since version#2576], Execute SetCommand, [[spark.sql.adaptive.advisoryPartitionSizeInBytes,<value of spark.sql.adaptive.shuffle.targetPostShuffleInputSize>,The advisory size in bytes of the shuffle partition during adaptive optimization (when spark.sql.adaptive.enabled is true). It takes effect when Spark coalesces small shuffle partitions or splits skewed shuffle partition.,3.0.0], [spark.sql.adaptive.autoBroadcastJoinThreshold,<undefined>,Configures the maximum size in bytes for a table that will be broadcast to all worker nodes when performing a join. By setting this value to -1 broadcasting can be disabled. The default value is same with spark.sql.autoBroadcastJoinThreshold. Note that, this config is used only in adaptive framework.,3.2.0], [spark.sql.adaptive.coalescePartitions.enabled,true,When true and 'spark.sql.adaptive.enabled' is true, Spark will coalesce contiguous shuffle partitions according to the target size (specified by 'spark.sql.adaptive.advisoryPartitionSizeInBytes'), to avoid too many small tasks.,3.0.0], [spark.sql.adaptive.coalescePartitions.initialPartitionNum,<undefined>,The initial number of shuffle partitions before coalescing. If not set, it equals to spark.sql.shuffle.partitions. This configuration only has an effect when 'spark.sql.adaptive.enabled' and 'spark.sql.adaptive.coalescePartitions.enabled' are both true.,3.0.0], [spark.sql.adaptive.coalescePartitions.minPartitionSize,1MB,The minimum size of shuffle partitions after coalescing. This is useful when the adaptively calculated target size is too small during partition coalescing.,3.2.0], [spark.sql.adaptive.coalescePartitions.parallelismFirst,true,When true, Spark does not respect the target size specified by 'spark.sql.adaptive.advisoryPartitionSizeInBytes' (default 64MB) when coalescing contiguous shuffle partitions, but adaptively calculate the target size according to the default parallelism of the Spark cluster. The calculated size is usually smaller than the configured target size. This is to maximize the parallelism and avoid performance regression when enabling adaptive query execution. It's recommended to set this config to false and respect the configured target size.,3.2.0], [spark.sql.adaptive.customCostEvaluatorClass,<undefined>,The custom cost evaluator class to be used for adaptive execution. If not being set, Spark will use its own SimpleCostEvaluator by default.,3.2.0], [spark.sql.adaptive.enabled,true,When true, enable adaptive query execution, which re-optimizes the query plan in the middle of query execution, based on accurate runtime statistics.,1.6.0], [spark.sql.adaptive.forceOptimizeSkewedJoin,false,When true, force enable OptimizeSkewedJoin even if it introduces extra shuffle.,3.3.0], [spark.sql.adaptive.localShuffleReader.enabled,true,When true and 'spark.sql.adaptive.enabled' is true, Spark tries to use local shuffle reader to read the shuffle data when the shuffle partitioning is not needed, for example, after converting sort-merge join to broadcast-hash join.,3.0.0], [spark.sql.adaptive.maxShuffledHashJoinLocalMapThreshold,0b,Configures the maximum size in bytes per partition that can be allowed to build local hash map. If this value is not smaller than spark.sql.adaptive.advisoryPartitionSizeInBytes and all the partition size are not larger than this config, join selection prefer to use shuffled hash join instead of sort merge join regardless of the value of spark.sql.join.preferSortMergeJoin.,3.2.0], [spark.sql.adaptive.optimizeSkewsInRebalancePartitions.enabled,true,When true and 'spark.sql.adaptive.enabled' is true, Spark will optimize the skewed shuffle partitions in RebalancePartitions and split them to smaller ones according to the target size (specified by 'spark.sql.adaptive.advisoryPartitionSizeInBytes'), to avoid data skew.,3.2.0], [spark.sql.adaptive.optimizer.excludedRules,<undefined>,Configures a list of rules to be disabled in the adaptive optimizer, in which the rules are specified by their rule names and separated by comma. The optimizer will log the rules that have indeed been excluded.,3.1.0], [spark.sql.adaptive.rebalancePartitionsSmallPartitionFactor,0.2,A partition will be merged during splitting if its size is small than this factor multiply spark.sql.adaptive.advisoryPartitionSizeInBytes.,3.3.0], [spark.sql.adaptive.skewJoin.enabled,true,When true and 'spark.sql.adaptive.enabled' is true, Spark dynamically handles skew in shuffled join (sort-merge and shuffled hash) by splitting (and replicating if needed) skewed partitions.,3.0.0], [spark.sql.adaptive.skewJoin.skewedPartitionFactor,5.0,A partition is considered as skewed if its size is larger than this factor multiplying the median partition size and also larger than 'spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes',3.0.0], [spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes,256MB,A partition is considered as skewed if its size in bytes is larger than this threshold and also larger than 'spark.sql.adaptive.skewJoin.skewedPartitionFactor' multiplying the median partition size. Ideally this config should be set larger than 'spark.sql.adaptive.advisoryPartitionSizeInBytes'.,3.0.0], [spark.sql.allowNamedFunctionArguments,true,If true, Spark will turn on support for named parameters for all functions that has it implemented.,3.5.0], [spark.sql.ansi.doubleQuotedIdentifiers,false,When true and 'spark.sql.ansi.enabled' is true, Spark SQL reads literals enclosed in double quoted (") as identifiers. When false they are read as string literals.,3.4.0], [spark.sql.ansi.enabled,false,When true, Spark SQL uses an ANSI compliant dialect instead of being Hive compliant. For example, Spark will throw an exception at runtime instead of returning null results when the inputs to a SQL operator/function are invalid.For full details of this dialect, you can find them in the section "ANSI Compliance" of Spark's documentation. Some ANSI dialect features may be not from the ANSI SQL standard directly, but their behaviors align with ANSI SQL's style,3.0.0], [spark.sql.ansi.enforceReservedKeywords,false,When true and 'spark.sql.ansi.enabled' is true, the Spark SQL parser enforces the ANSI reserved keywords and forbids SQL queries that use reserved keywords as alias names and/or identifiers for table, view, function, etc.,3.3.0], [spark.sql.ansi.relationPrecedence,false,When true and 'spark.sql.ansi.enabled' is true, JOIN takes precedence over comma when combining relation. For example, `t1, t2 JOIN t3` should result to `t1 X (t2 X t3)`. If the config is false, the result is `(t1 X t2) X t3`.,3.4.0], [spark.sql.autoBroadcastJoinThreshold,10MB,Configures the maximum size in bytes for a table that will be broadcast to all worker nodes when performing a join. By setting this value to -1 broadcasting can be disabled. Note that currently statistics are only supported for Hive Metastore tables where the command `ANALYZE TABLE <tableName> COMPUTE STATISTICS noscan` has been run, and file-based data source tables where the statistics are computed directly on the files of data.,1.1.0], [spark.sql.avro.compression.codec,snappy,Compression codec used in writing of AVRO files. Supported codecs: uncompressed, deflate, snappy, bzip2, xz and zstandard. Default codec is snappy.,2.4.0], ... 183 more fields]
+- SetCommand (-v,None)
== Physical Plan ==
CommandResult [key#2573, value#2574, meaning#2575, Since version#2576]
+- Execute SetCommand
+- SetCommand (-v,None)
|
jonathon
|
|
e42445e9-0901-4632-8649-75569bf5ac95
|
2025/06/13 22:37:47
|
2025/06/13 22:37:47
|
2025/06/13 22:37:47
|
240 ms
|
331 ms
|
Listing tables 'catalog : null, schemaPattern : %, tableTypes : null, tableName : %'
|
CLOSED
|
|
jonathon
|
|
557d3a44-cbef-455b-99fc-f26ee1546387
|
2025/06/13 22:37:47
|
2025/06/13 22:37:47
|
2025/06/13 22:37:47
|
24 ms
|
116 ms
|
Listing columns 'catalog : null, schemaPattern : default, tablePattern : airports, columnName : null'
|
CLOSED
|
|
jonathon
|
|
f841a93a-75d6-40a4-ab0e-37a014173cb2
|
2025/06/13 22:37:47
|
2025/06/13 22:37:47
|
2025/06/13 22:37:47
|
95 ms
|
194 ms
|
DESCRIBE default.airports
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'DescribeRelation false, [col_name#2598, data_type#2599, comment#2600]
+- 'UnresolvedTableOrView [default, airports], DESCRIBE TABLE, true
== Analyzed Logical Plan ==
col_name: string, data_type: string, comment: string
DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#2598, data_type#2599, comment#2600]
== Optimized Logical Plan ==
CommandResult [col_name#2598, data_type#2599, comment#2600], Execute DescribeTableCommand, [[id,string,null], [type,string,null], [name,string,null], [lat,double,null], [lon,double,null], [elev,double,null], [continent,string,null], [country,string,null], [region,string,null], [city,string,null], [iata,string,null], [code,string,null], [gps,string,null]]
+- DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#2598, data_type#2599, comment#2600]
== Physical Plan ==
CommandResult [col_name#2598, data_type#2599, comment#2600]
+- Execute DescribeTableCommand
+- DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#2598, data_type#2599, comment#2600]
|
jonathon
|
|
161d8f56-6f26-4534-8c1a-6823f620d0a1
|
2025/06/13 22:37:47
|
2025/06/13 22:37:48
|
2025/06/13 22:37:48
|
88 ms
|
184 ms
|
DESCRIBE default.airports
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'DescribeRelation false, [col_name#2621, data_type#2622, comment#2623]
+- 'UnresolvedTableOrView [default, airports], DESCRIBE TABLE, true
== Analyzed Logical Plan ==
col_name: string, data_type: string, comment: string
DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#2621, data_type#2622, comment#2623]
== Optimized Logical Plan ==
CommandResult [col_name#2621, data_type#2622, comment#2623], Execute DescribeTableCommand, [[id,string,null], [type,string,null], [name,string,null], [lat,double,null], [lon,double,null], [elev,double,null], [continent,string,null], [country,string,null], [region,string,null], [city,string,null], [iata,string,null], [code,string,null], [gps,string,null]]
+- DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#2621, data_type#2622, comment#2623]
== Physical Plan ==
CommandResult [col_name#2621, data_type#2622, comment#2623]
+- Execute DescribeTableCommand
+- DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#2621, data_type#2622, comment#2623]
|
jonathon
|
|
b771d1e2-ba8c-47c4-ad6f-e0223ade0b2c
|
2025/06/13 22:37:48
|
2025/06/13 22:37:48
|
2025/06/13 22:37:48
|
28 ms
|
120 ms
|
Listing columns 'catalog : null, schemaPattern : default, tablePattern : airports, columnName : null'
|
CLOSED
|
|
jonathon
|
[36]
|
5ee2818f-b651-41c5-ad86-413b14b0a699
|
2025/06/13 22:37:48
|
2025/06/13 22:37:48
|
2025/06/13 22:37:48
|
186 ms
|
282 ms
|
SELECT C_43 AS C_16, C_3 AS C_17, C_2 AS C_15, C_4331 AS C_21, C_4332 AS C_22, C_4333 AS C_19, C_7 AS C_18, C_6 AS C_20, C_9 AS C_23, C_8 AS C_25, C_5 AS C_24, C_11 AS C_13, C_10 AS C_12, C_1 AS C_14 FROM (SELECT C_64656661756c745f616972706f727473.`id` AS C_43, C_64656661756c745f616972706f727473.`type` AS C_3, C_64656661756c745f616972706f727473.`name` AS C_2, C_64656661756c745f616972706f727473.`lat` AS C_0, C_64656661756c745f616972706f727473.`lon` AS C_4, C_64656661756c745f616972706f727473.`elev` AS C_1, C_64656661756c745f616972706f727473.`continent` AS C_7, C_64656661756c745f616972706f727473.`country` AS C_6, C_64656661756c745f616972706f727473.`region` AS C_9, C_64656661756c745f616972706f727473.`city` AS C_8, C_64656661756c745f616972706f727473.`iata` AS C_5, C_64656661756c745f616972706f727473.`code` AS C_11, C_64656661756c745f616972706f727473.`gps` AS C_10, (round((C_64656661756c745f616972706f727473.`lat` * power(1.000000000000000E+001, 3)), 0) / power(1.000000000000000E+001, 3)) AS C_4331, (round((C_64656661756c745f616972706f727473.`lon` * power(1.000000000000000E+001, 3)), 0) / power(1.000000000000000E+001, 3)) AS C_4332, (round((C_64656661756c745f616972706f727473.`elev` * power(1.000000000000000E+001, 3)), 0) / power(1.000000000000000E+001, 3)) AS C_4333 FROM `default`.`airports` C_64656661756c745f616972706f727473 WHERE ((C_64656661756c745f616972706f727473.`lon` <= (- 1.040500000000000E+002)) AND (C_64656661756c745f616972706f727473.`lon` >= (- 1.110500000000000E+002)) AND (C_64656661756c745f616972706f727473.`lat` >= 4.100000000000000E+001) AND (C_64656661756c745f616972706f727473.`lat` <= 4.500000000000000E+001)) ) C_4954424c ORDER BY C_14 DESC LIMIT 5
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'GlobalLimit 5
+- 'LocalLimit 5
+- 'Sort ['C_14 DESC NULLS LAST], true
+- 'Project ['C_43 AS C_16#2660, 'C_3 AS C_17#2661, 'C_2 AS C_15#2662, 'C_4331 AS C_21#2663, 'C_4332 AS C_22#2664, 'C_4333 AS C_19#2665, 'C_7 AS C_18#2666, 'C_6 AS C_20#2667, 'C_9 AS C_23#2668, 'C_8 AS C_25#2669, 'C_5 AS C_24#2670, 'C_11 AS C_13#2671, 'C_10 AS C_12#2672, 'C_1 AS C_14#2673]
+- 'SubqueryAlias C_4954424c
+- 'Project ['C_64656661756c745f616972706f727473.id AS C_43#2644, 'C_64656661756c745f616972706f727473.type AS C_3#2645, 'C_64656661756c745f616972706f727473.name AS C_2#2646, 'C_64656661756c745f616972706f727473.lat AS C_0#2647, 'C_64656661756c745f616972706f727473.lon AS C_4#2648, 'C_64656661756c745f616972706f727473.elev AS C_1#2649, 'C_64656661756c745f616972706f727473.continent AS C_7#2650, 'C_64656661756c745f616972706f727473.country AS C_6#2651, 'C_64656661756c745f616972706f727473.region AS C_9#2652, 'C_64656661756c745f616972706f727473.city AS C_8#2653, 'C_64656661756c745f616972706f727473.iata AS C_5#2654, 'C_64656661756c745f616972706f727473.code AS C_11#2655, 'C_64656661756c745f616972706f727473.gps AS C_10#2656, ('round(('C_64656661756c745f616972706f727473.lat * 'power(10.0, 3)), 0) / 'power(10.0, 3)) AS C_4331#2657, ('round(('C_64656661756c745f616972706f727473.lon * 'power(10.0, 3)), 0) / 'power(10.0, 3)) AS C_4332#2658, ('round(('C_64656661756c745f616972706f727473.elev * 'power(10.0, 3)), 0) / 'power(10.0, 3)) AS C_4333#2659]
+- 'Filter ((('C_64656661756c745f616972706f727473.lon <= -104.05) AND ('C_64656661756c745f616972706f727473.lon >= -111.05)) AND (('C_64656661756c745f616972706f727473.lat >= 41.0) AND ('C_64656661756c745f616972706f727473.lat <= 45.0)))
+- 'SubqueryAlias C_64656661756c745f616972706f727473
+- 'UnresolvedRelation [default, airports], [], false
== Analyzed Logical Plan ==
C_16: string, C_17: string, C_15: string, C_21: double, C_22: double, C_19: double, C_18: string, C_20: string, C_23: string, C_25: string, C_24: string, C_13: string, C_12: string, C_14: double
GlobalLimit 5
+- LocalLimit 5
+- Sort [C_14#2673 DESC NULLS LAST], true
+- Project [C_43#2644 AS C_16#2660, C_3#2645 AS C_17#2661, C_2#2646 AS C_15#2662, C_4331#2657 AS C_21#2663, C_4332#2658 AS C_22#2664, C_4333#2659 AS C_19#2665, C_7#2650 AS C_18#2666, C_6#2651 AS C_20#2667, C_9#2652 AS C_23#2668, C_8#2653 AS C_25#2669, C_5#2654 AS C_24#2670, C_11#2655 AS C_13#2671, C_10#2656 AS C_12#2672, C_1#2649 AS C_14#2673]
+- SubqueryAlias C_4954424c
+- Project [id#2674 AS C_43#2644, type#2675 AS C_3#2645, name#2676 AS C_2#2646, lat#2677 AS C_0#2647, lon#2678 AS C_4#2648, elev#2679 AS C_1#2649, continent#2680 AS C_7#2650, country#2681 AS C_6#2651, region#2682 AS C_9#2652, city#2683 AS C_8#2653, iata#2684 AS C_5#2654, code#2685 AS C_11#2655, gps#2686 AS C_10#2656, (round((lat#2677 * POWER(10.0, cast(3 as double))), 0) / POWER(10.0, cast(3 as double))) AS C_4331#2657, (round((lon#2678 * POWER(10.0, cast(3 as double))), 0) / POWER(10.0, cast(3 as double))) AS C_4332#2658, (round((elev#2679 * POWER(10.0, cast(3 as double))), 0) / POWER(10.0, cast(3 as double))) AS C_4333#2659]
+- Filter (((lon#2678 <= -104.05) AND (lon#2678 >= -111.05)) AND ((lat#2677 >= 41.0) AND (lat#2677 <= 45.0)))
+- SubqueryAlias C_64656661756c745f616972706f727473
+- SubqueryAlias spark_catalog.default.airports
+- Relation spark_catalog.default.airports[id#2674,type#2675,name#2676,lat#2677,lon#2678,elev#2679,continent#2680,country#2681,region#2682,city#2683,iata#2684,code#2685,gps#2686] parquet
== Optimized Logical Plan ==
GlobalLimit 5
+- LocalLimit 5
+- Sort [C_14#2673 DESC NULLS LAST], true
+- Project [id#2674 AS C_16#2660, type#2675 AS C_17#2661, name#2676 AS C_15#2662, (round((lat#2677 * 1000.0), 0) / 1000.0) AS C_21#2663, (round((lon#2678 * 1000.0), 0) / 1000.0) AS C_22#2664, (round((elev#2679 * 1000.0), 0) / 1000.0) AS C_19#2665, continent#2680 AS C_18#2666, country#2681 AS C_20#2667, region#2682 AS C_23#2668, city#2683 AS C_25#2669, iata#2684 AS C_24#2670, code#2685 AS C_13#2671, gps#2686 AS C_12#2672, elev#2679 AS C_14#2673]
+- Filter ((isnotnull(lon#2678) AND isnotnull(lat#2677)) AND (((lon#2678 <= -104.05) AND (lon#2678 >= -111.05)) AND ((lat#2677 >= 41.0) AND (lat#2677 <= 45.0))))
+- Relation spark_catalog.default.airports[id#2674,type#2675,name#2676,lat#2677,lon#2678,elev#2679,continent#2680,country#2681,region#2682,city#2683,iata#2684,code#2685,gps#2686] parquet
== Physical Plan ==
TakeOrderedAndProject(limit=5, orderBy=[C_14#2673 DESC NULLS LAST], output=[C_16#2660,C_17#2661,C_15#2662,C_21#2663,C_22#2664,C_19#2665,C_18#2666,C_20#2667,C_23#2668,C_25#2669,C_24#2670,C_13#2671,C_12#2672,C_14#2673])
+- *(1) Project [id#2674 AS C_16#2660, type#2675 AS C_17#2661, name#2676 AS C_15#2662, (round((lat#2677 * 1000.0), 0) / 1000.0) AS C_21#2663, (round((lon#2678 * 1000.0), 0) / 1000.0) AS C_22#2664, (round((elev#2679 * 1000.0), 0) / 1000.0) AS C_19#2665, continent#2680 AS C_18#2666, country#2681 AS C_20#2667, region#2682 AS C_23#2668, city#2683 AS C_25#2669, iata#2684 AS C_24#2670, code#2685 AS C_13#2671, gps#2686 AS C_12#2672, elev#2679 AS C_14#2673]
+- *(1) Filter (((((isnotnull(lon#2678) AND isnotnull(lat#2677)) AND (lon#2678 <= -104.05)) AND (lon#2678 >= -111.05)) AND (lat#2677 >= 41.0)) AND (lat#2677 <= 45.0))
+- *(1) ColumnarToRow
+- FileScan parquet spark_catalog.default.airports[id#2674,type#2675,name#2676,lat#2677,lon#2678,elev#2679,continent#2680,country#2681,region#2682,city#2683,iata#2684,code#2685,gps#2686] Batched: true, DataFilters: [isnotnull(lon#2678), isnotnull(lat#2677), (lon#2678 <= -104.05), (lon#2678 >= -111.05), (lat#267..., Format: Parquet, Location: InMemoryFileIndex(1 paths)[file:/home/acdcadmin/spark-warehouse/airports], PartitionFilters: [], PushedFilters: [IsNotNull(lon), IsNotNull(lat), LessThanOrEqual(lon,-104.05), GreaterThanOrEqual(lon,-111.05), G..., ReadSchema: struct<id:string,type:string,name:string,lat:double,lon:double,elev:double,continent:string,count...
|
jonathan
|
|
82ece942-c4e6-406e-9366-aed2ae67c729
|
2025/06/13 22:39:04
|
2025/06/13 22:39:04
|
2025/06/13 22:39:05
|
12 ms
|
770 ms
|
Listing catalogs
|
CLOSED
|
|
jonathan
|
|
c4177770-6474-4fde-940d-efc9fd04cb71
|
2025/06/13 22:39:05
|
2025/06/13 22:39:05
|
2025/06/13 22:39:05
|
34 ms
|
355 ms
|
Listing databases 'catalog : , schemaPattern : null'
|
CLOSED
|
|
jonathan
|
|
d2b58a5b-b61f-4d30-92ef-9837d1d25622
|
2025/06/13 22:39:05
|
2025/06/13 22:39:06
|
2025/06/13 22:39:06
|
40 ms
|
379 ms
|
SHOW TABLES IN `c3ba675f1fb64660ba4a90155b35924e`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'ShowTables [namespace#2717, tableName#2718, isTemporary#2719]
+- 'UnresolvedNamespace [c3ba675f1fb64660ba4a90155b35924e]
== Analyzed Logical Plan ==
namespace: string, tableName: string, isTemporary: boolean
ShowTables [namespace#2717, tableName#2718, isTemporary#2719]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [c3ba675f1fb64660ba4a90155b35924e]
== Optimized Logical Plan ==
CommandResult [namespace#2717, tableName#2718, isTemporary#2719], ShowTables [namespace#2717, tableName#2718, isTemporary#2719], V2SessionCatalog(spark_catalog), [c3ba675f1fb64660ba4a90155b35924e], [[0,2000000020,400000000c,0,6635373661623363,3036363436626631,3531303961346162,6534323935336235,69746e656469796d,72656966]]
+- ShowTables [namespace#2717, tableName#2718, isTemporary#2719]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [c3ba675f1fb64660ba4a90155b35924e]
== Physical Plan ==
CommandResult [namespace#2717, tableName#2718, isTemporary#2719]
+- ShowTables [namespace#2717, tableName#2718, isTemporary#2719], V2SessionCatalog(spark_catalog), [c3ba675f1fb64660ba4a90155b35924e]
|
jonathan
|
|
42443fae-e69b-4568-86b8-a04c28fdddd2
|
2025/06/13 22:39:06
|
2025/06/13 22:39:06
|
2025/06/13 22:39:06
|
48 ms
|
325 ms
|
SHOW TABLES IN `default`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'ShowTables [namespace#2737, tableName#2738, isTemporary#2739]
+- 'UnresolvedNamespace [default]
== Analyzed Logical Plan ==
namespace: string, tableName: string, isTemporary: boolean
ShowTables [namespace#2737, tableName#2738, isTemporary#2739]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [default]
== Optimized Logical Plan ==
CommandResult [namespace#2737, tableName#2738, isTemporary#2739], ShowTables [namespace#2737, tableName#2738, isTemporary#2739], V2SessionCatalog(spark_catalog), [default], [[0,2000000007,2800000008,0,746c7561666564,7374726f70726961], [0,2000000007,2800000008,0,746c7561666564,73657079746c6c61], [0,2000000007,2800000009,0,746c7561666564,73657079746c6c61,32], [0,2000000007,280000000d,0,746c7561666564,73657079746c6c61,6369736162], [0,2000000007,280000000e,0,746c7561666564,73657079746c6c61,326369736162], [0,2000000007,2800000009,0,746c7561666564,7079747961727261,65], [0,2000000007,280000000a,0,746c7561666564,7974746e69676962,6570], [0,2000000007,280000000a,0,746c7561666564,79747972616e6962,6570], [0,2000000007,2800000008,0,746c7561666564,6570797465746164], [0,2000000007,280000000b,0,746c7561666564,746c616d69636564,657079], [0,2000000007,2800000009,0,746c7561666564,70797474616f6c66,65], [0,2000000007,2800000008,0,746c7561666564,736570797470616d], [0,2000000007,280000000b,0,746c7561666564,646978617463796e,617461], [0,2000000007,280000000f,0,746c7561666564,746978617463796e,61746164706972], [0,2000000007,2800000010,0,746c7561666564,7365745f656d6f73,32656c6261745f74], [0,2000000007,280000000a,0,746c7561666564,7974746375727473,6570], [0,2000000007,280000000e,0,746c7561666564,656e6f7a69786174,70756b6f6f6c], [0,2000000007,280000000c,0,746c7561666564,74676e696b726f77,73657079], [0,2000000007,2800000016,0,746c7561666564,74676e696b726f77,6874697773657079,7265626d756e]]
+- ShowTables [namespace#2737, tableName#2738, isTemporary#2739]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [default]
== Physical Plan ==
CommandResult [namespace#2737, tableName#2738, isTemporary#2739]
+- ShowTables [namespace#2737, tableName#2738, isTemporary#2739], V2SessionCatalog(spark_catalog), [default]
|
jonathan
|
|
fef01b9d-1d9a-4022-a02c-24c2343faa8c
|
2025/06/13 22:39:06
|
2025/06/13 22:39:06
|
2025/06/13 22:39:07
|
34 ms
|
342 ms
|
SHOW TABLES IN `onetableschema`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'ShowTables [namespace#2757, tableName#2758, isTemporary#2759]
+- 'UnresolvedNamespace [onetableschema]
== Analyzed Logical Plan ==
namespace: string, tableName: string, isTemporary: boolean
ShowTables [namespace#2757, tableName#2758, isTemporary#2759]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [onetableschema]
== Optimized Logical Plan ==
CommandResult [namespace#2757, tableName#2758, isTemporary#2759], ShowTables [namespace#2757, tableName#2758, isTemporary#2759], V2SessionCatalog(spark_catalog), [onetableschema], [[0,200000000e,300000000c,0,656c626174656e6f,616d65686373,73657079746c6c61,74736574]]
+- ShowTables [namespace#2757, tableName#2758, isTemporary#2759]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [onetableschema]
== Physical Plan ==
CommandResult [namespace#2757, tableName#2758, isTemporary#2759]
+- ShowTables [namespace#2757, tableName#2758, isTemporary#2759], V2SessionCatalog(spark_catalog), [onetableschema]
|
jonathan
|
|
5f9e9c75-faf6-4f50-9159-5ef4655a51ee
|
2025/06/13 22:39:07
|
2025/06/13 22:39:07
|
2025/06/13 22:39:07
|
19 ms
|
331 ms
|
SHOW TABLES IN `test`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'ShowTables [namespace#2777, tableName#2778, isTemporary#2779]
+- 'UnresolvedNamespace [test]
== Analyzed Logical Plan ==
namespace: string, tableName: string, isTemporary: boolean
ShowTables [namespace#2777, tableName#2778, isTemporary#2779]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [test]
== Optimized Logical Plan ==
CommandResult [namespace#2777, tableName#2778, isTemporary#2779], ShowTables [namespace#2777, tableName#2778, isTemporary#2779], V2SessionCatalog(spark_catalog), [test]
+- ShowTables [namespace#2777, tableName#2778, isTemporary#2779]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [test]
== Physical Plan ==
CommandResult <empty>, [namespace#2777, tableName#2778, isTemporary#2779]
+- ShowTables [namespace#2777, tableName#2778, isTemporary#2779], V2SessionCatalog(spark_catalog), [test]
|
jonathan
|
|
7e70771a-b47a-45c0-be4f-ef4ae70a2a9d
|
2025/06/13 22:39:07
|
2025/06/13 22:39:07
|
2025/06/13 22:39:08
|
12 ms
|
322 ms
|
SHOW TABLES IN `global_temp`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'ShowTables [namespace#2787, tableName#2788, isTemporary#2789]
+- 'UnresolvedNamespace [global_temp]
== Analyzed Logical Plan ==
namespace: string, tableName: string, isTemporary: boolean
ShowTables [namespace#2787, tableName#2788, isTemporary#2789]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [global_temp]
== Optimized Logical Plan ==
CommandResult [namespace#2787, tableName#2788, isTemporary#2789], ShowTables [namespace#2787, tableName#2788, isTemporary#2789], V2SessionCatalog(spark_catalog), [global_temp]
+- ShowTables [namespace#2787, tableName#2788, isTemporary#2789]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [global_temp]
== Physical Plan ==
CommandResult <empty>, [namespace#2787, tableName#2788, isTemporary#2789]
+- ShowTables [namespace#2787, tableName#2788, isTemporary#2789], V2SessionCatalog(spark_catalog), [global_temp]
|
jonathon
|
|
de4e9f6b-1dde-46e8-a9f8-94f35fbf6cd1
|
2025/06/13 22:44:54
|
2025/06/13 22:44:54
|
2025/06/13 22:44:54
|
36 ms
|
209 ms
|
set -v
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
SetCommand (-v,None)
== Analyzed Logical Plan ==
key: string, value: string, meaning: string, Since version: string
SetCommand (-v,None)
== Optimized Logical Plan ==
CommandResult [key#2797, value#2798, meaning#2799, Since version#2800], Execute SetCommand, [[spark.sql.adaptive.advisoryPartitionSizeInBytes,<value of spark.sql.adaptive.shuffle.targetPostShuffleInputSize>,The advisory size in bytes of the shuffle partition during adaptive optimization (when spark.sql.adaptive.enabled is true). It takes effect when Spark coalesces small shuffle partitions or splits skewed shuffle partition.,3.0.0], [spark.sql.adaptive.autoBroadcastJoinThreshold,<undefined>,Configures the maximum size in bytes for a table that will be broadcast to all worker nodes when performing a join. By setting this value to -1 broadcasting can be disabled. The default value is same with spark.sql.autoBroadcastJoinThreshold. Note that, this config is used only in adaptive framework.,3.2.0], [spark.sql.adaptive.coalescePartitions.enabled,true,When true and 'spark.sql.adaptive.enabled' is true, Spark will coalesce contiguous shuffle partitions according to the target size (specified by 'spark.sql.adaptive.advisoryPartitionSizeInBytes'), to avoid too many small tasks.,3.0.0], [spark.sql.adaptive.coalescePartitions.initialPartitionNum,<undefined>,The initial number of shuffle partitions before coalescing. If not set, it equals to spark.sql.shuffle.partitions. This configuration only has an effect when 'spark.sql.adaptive.enabled' and 'spark.sql.adaptive.coalescePartitions.enabled' are both true.,3.0.0], [spark.sql.adaptive.coalescePartitions.minPartitionSize,1MB,The minimum size of shuffle partitions after coalescing. This is useful when the adaptively calculated target size is too small during partition coalescing.,3.2.0], [spark.sql.adaptive.coalescePartitions.parallelismFirst,true,When true, Spark does not respect the target size specified by 'spark.sql.adaptive.advisoryPartitionSizeInBytes' (default 64MB) when coalescing contiguous shuffle partitions, but adaptively calculate the target size according to the default parallelism of the Spark cluster. The calculated size is usually smaller than the configured target size. This is to maximize the parallelism and avoid performance regression when enabling adaptive query execution. It's recommended to set this config to false and respect the configured target size.,3.2.0], [spark.sql.adaptive.customCostEvaluatorClass,<undefined>,The custom cost evaluator class to be used for adaptive execution. If not being set, Spark will use its own SimpleCostEvaluator by default.,3.2.0], [spark.sql.adaptive.enabled,true,When true, enable adaptive query execution, which re-optimizes the query plan in the middle of query execution, based on accurate runtime statistics.,1.6.0], [spark.sql.adaptive.forceOptimizeSkewedJoin,false,When true, force enable OptimizeSkewedJoin even if it introduces extra shuffle.,3.3.0], [spark.sql.adaptive.localShuffleReader.enabled,true,When true and 'spark.sql.adaptive.enabled' is true, Spark tries to use local shuffle reader to read the shuffle data when the shuffle partitioning is not needed, for example, after converting sort-merge join to broadcast-hash join.,3.0.0], [spark.sql.adaptive.maxShuffledHashJoinLocalMapThreshold,0b,Configures the maximum size in bytes per partition that can be allowed to build local hash map. If this value is not smaller than spark.sql.adaptive.advisoryPartitionSizeInBytes and all the partition size are not larger than this config, join selection prefer to use shuffled hash join instead of sort merge join regardless of the value of spark.sql.join.preferSortMergeJoin.,3.2.0], [spark.sql.adaptive.optimizeSkewsInRebalancePartitions.enabled,true,When true and 'spark.sql.adaptive.enabled' is true, Spark will optimize the skewed shuffle partitions in RebalancePartitions and split them to smaller ones according to the target size (specified by 'spark.sql.adaptive.advisoryPartitionSizeInBytes'), to avoid data skew.,3.2.0], [spark.sql.adaptive.optimizer.excludedRules,<undefined>,Configures a list of rules to be disabled in the adaptive optimizer, in which the rules are specified by their rule names and separated by comma. The optimizer will log the rules that have indeed been excluded.,3.1.0], [spark.sql.adaptive.rebalancePartitionsSmallPartitionFactor,0.2,A partition will be merged during splitting if its size is small than this factor multiply spark.sql.adaptive.advisoryPartitionSizeInBytes.,3.3.0], [spark.sql.adaptive.skewJoin.enabled,true,When true and 'spark.sql.adaptive.enabled' is true, Spark dynamically handles skew in shuffled join (sort-merge and shuffled hash) by splitting (and replicating if needed) skewed partitions.,3.0.0], [spark.sql.adaptive.skewJoin.skewedPartitionFactor,5.0,A partition is considered as skewed if its size is larger than this factor multiplying the median partition size and also larger than 'spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes',3.0.0], [spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes,256MB,A partition is considered as skewed if its size in bytes is larger than this threshold and also larger than 'spark.sql.adaptive.skewJoin.skewedPartitionFactor' multiplying the median partition size. Ideally this config should be set larger than 'spark.sql.adaptive.advisoryPartitionSizeInBytes'.,3.0.0], [spark.sql.allowNamedFunctionArguments,true,If true, Spark will turn on support for named parameters for all functions that has it implemented.,3.5.0], [spark.sql.ansi.doubleQuotedIdentifiers,false,When true and 'spark.sql.ansi.enabled' is true, Spark SQL reads literals enclosed in double quoted (") as identifiers. When false they are read as string literals.,3.4.0], [spark.sql.ansi.enabled,false,When true, Spark SQL uses an ANSI compliant dialect instead of being Hive compliant. For example, Spark will throw an exception at runtime instead of returning null results when the inputs to a SQL operator/function are invalid.For full details of this dialect, you can find them in the section "ANSI Compliance" of Spark's documentation. Some ANSI dialect features may be not from the ANSI SQL standard directly, but their behaviors align with ANSI SQL's style,3.0.0], [spark.sql.ansi.enforceReservedKeywords,false,When true and 'spark.sql.ansi.enabled' is true, the Spark SQL parser enforces the ANSI reserved keywords and forbids SQL queries that use reserved keywords as alias names and/or identifiers for table, view, function, etc.,3.3.0], [spark.sql.ansi.relationPrecedence,false,When true and 'spark.sql.ansi.enabled' is true, JOIN takes precedence over comma when combining relation. For example, `t1, t2 JOIN t3` should result to `t1 X (t2 X t3)`. If the config is false, the result is `(t1 X t2) X t3`.,3.4.0], [spark.sql.autoBroadcastJoinThreshold,10MB,Configures the maximum size in bytes for a table that will be broadcast to all worker nodes when performing a join. By setting this value to -1 broadcasting can be disabled. Note that currently statistics are only supported for Hive Metastore tables where the command `ANALYZE TABLE <tableName> COMPUTE STATISTICS noscan` has been run, and file-based data source tables where the statistics are computed directly on the files of data.,1.1.0], [spark.sql.avro.compression.codec,snappy,Compression codec used in writing of AVRO files. Supported codecs: uncompressed, deflate, snappy, bzip2, xz and zstandard. Default codec is snappy.,2.4.0], ... 183 more fields]
+- SetCommand (-v,None)
== Physical Plan ==
CommandResult [key#2797, value#2798, meaning#2799, Since version#2800]
+- Execute SetCommand
+- SetCommand (-v,None)
|
jonathon
|
|
c90cccb9-6b56-403e-aa36-8fa4abe6011e
|
2025/06/13 22:44:54
|
2025/06/13 22:44:55
|
2025/06/13 22:44:55
|
222 ms
|
317 ms
|
Listing tables 'catalog : null, schemaPattern : %, tableTypes : null, tableName : %'
|
CLOSED
|
|
jonathon
|
|
d0d4aba6-8208-43a0-a733-6f6a2284b010
|
2025/06/13 22:44:55
|
2025/06/13 22:44:55
|
2025/06/13 22:44:55
|
47 ms
|
147 ms
|
Listing columns 'catalog : null, schemaPattern : default, tablePattern : airports, columnName : null'
|
CLOSED
|
|
jonathon
|
|
47ef6081-63ac-45db-9286-1fb48f5f4221
|
2025/06/13 22:44:55
|
2025/06/13 22:44:55
|
2025/06/13 22:44:55
|
100 ms
|
200 ms
|
DESCRIBE default.airports
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'DescribeRelation false, [col_name#2822, data_type#2823, comment#2824]
+- 'UnresolvedTableOrView [default, airports], DESCRIBE TABLE, true
== Analyzed Logical Plan ==
col_name: string, data_type: string, comment: string
DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#2822, data_type#2823, comment#2824]
== Optimized Logical Plan ==
CommandResult [col_name#2822, data_type#2823, comment#2824], Execute DescribeTableCommand, [[id,string,null], [type,string,null], [name,string,null], [lat,double,null], [lon,double,null], [elev,double,null], [continent,string,null], [country,string,null], [region,string,null], [city,string,null], [iata,string,null], [code,string,null], [gps,string,null]]
+- DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#2822, data_type#2823, comment#2824]
== Physical Plan ==
CommandResult [col_name#2822, data_type#2823, comment#2824]
+- Execute DescribeTableCommand
+- DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#2822, data_type#2823, comment#2824]
|
jonathon
|
|
f963a6e1-d9ce-47b3-ad7f-e64435840746
|
2025/06/13 22:44:55
|
2025/06/13 22:44:55
|
2025/06/13 22:44:55
|
93 ms
|
211 ms
|
DESCRIBE default.airports
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'DescribeRelation false, [col_name#2845, data_type#2846, comment#2847]
+- 'UnresolvedTableOrView [default, airports], DESCRIBE TABLE, true
== Analyzed Logical Plan ==
col_name: string, data_type: string, comment: string
DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#2845, data_type#2846, comment#2847]
== Optimized Logical Plan ==
CommandResult [col_name#2845, data_type#2846, comment#2847], Execute DescribeTableCommand, [[id,string,null], [type,string,null], [name,string,null], [lat,double,null], [lon,double,null], [elev,double,null], [continent,string,null], [country,string,null], [region,string,null], [city,string,null], [iata,string,null], [code,string,null], [gps,string,null]]
+- DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#2845, data_type#2846, comment#2847]
== Physical Plan ==
CommandResult [col_name#2845, data_type#2846, comment#2847]
+- Execute DescribeTableCommand
+- DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#2845, data_type#2846, comment#2847]
|
jonathon
|
|
7db97e51-8703-4fc1-8f61-2a343cb12304
|
2025/06/13 22:44:55
|
2025/06/13 22:44:55
|
2025/06/13 22:44:56
|
23 ms
|
132 ms
|
Listing columns 'catalog : null, schemaPattern : default, tablePattern : airports, columnName : null'
|
CLOSED
|
|
jonathon
|
[37]
|
1f24d235-f05b-48c7-98cd-daab7569b935
|
2025/06/13 22:44:56
|
2025/06/13 22:44:56
|
2025/06/13 22:44:56
|
187 ms
|
288 ms
|
SELECT C_9 AS C_25, C_2 AS C_22, C_7 AS C_19, C_4331 AS C_16, C_4332 AS C_18, C_4333 AS C_13, C_6 AS C_21, C_8 AS C_20, C_43 AS C_17, C_0 AS C_14, C_1 AS C_12, C_11 AS C_24, C_10 AS C_15, C_5 AS C_23 FROM (SELECT C_64656661756c745f616972706f727473.`id` AS C_9, C_64656661756c745f616972706f727473.`type` AS C_2, C_64656661756c745f616972706f727473.`name` AS C_7, C_64656661756c745f616972706f727473.`lat` AS C_3, C_64656661756c745f616972706f727473.`lon` AS C_4, C_64656661756c745f616972706f727473.`elev` AS C_5, C_64656661756c745f616972706f727473.`continent` AS C_6, C_64656661756c745f616972706f727473.`country` AS C_8, C_64656661756c745f616972706f727473.`region` AS C_43, C_64656661756c745f616972706f727473.`city` AS C_0, C_64656661756c745f616972706f727473.`iata` AS C_1, C_64656661756c745f616972706f727473.`code` AS C_11, C_64656661756c745f616972706f727473.`gps` AS C_10, (round((C_64656661756c745f616972706f727473.`lat` * power(1.000000000000000E+001, 3)), 0) / power(1.000000000000000E+001, 3)) AS C_4331, (round((C_64656661756c745f616972706f727473.`lon` * power(1.000000000000000E+001, 3)), 0) / power(1.000000000000000E+001, 3)) AS C_4332, (round((C_64656661756c745f616972706f727473.`elev` * power(1.000000000000000E+001, 3)), 0) / power(1.000000000000000E+001, 3)) AS C_4333 FROM `default`.`airports` C_64656661756c745f616972706f727473 WHERE ((C_64656661756c745f616972706f727473.`lon` <= (- 1.040500000000000E+002)) AND (C_64656661756c745f616972706f727473.`lon` >= (- 1.110500000000000E+002)) AND (C_64656661756c745f616972706f727473.`lat` >= 4.100000000000000E+001) AND (C_64656661756c745f616972706f727473.`lat` <= 4.500000000000000E+001)) ) C_4954424c ORDER BY C_23 DESC LIMIT 5
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'GlobalLimit 5
+- 'LocalLimit 5
+- 'Sort ['C_23 DESC NULLS LAST], true
+- 'Project ['C_9 AS C_25#2884, 'C_2 AS C_22#2885, 'C_7 AS C_19#2886, 'C_4331 AS C_16#2887, 'C_4332 AS C_18#2888, 'C_4333 AS C_13#2889, 'C_6 AS C_21#2890, 'C_8 AS C_20#2891, 'C_43 AS C_17#2892, 'C_0 AS C_14#2893, 'C_1 AS C_12#2894, 'C_11 AS C_24#2895, 'C_10 AS C_15#2896, 'C_5 AS C_23#2897]
+- 'SubqueryAlias C_4954424c
+- 'Project ['C_64656661756c745f616972706f727473.id AS C_9#2868, 'C_64656661756c745f616972706f727473.type AS C_2#2869, 'C_64656661756c745f616972706f727473.name AS C_7#2870, 'C_64656661756c745f616972706f727473.lat AS C_3#2871, 'C_64656661756c745f616972706f727473.lon AS C_4#2872, 'C_64656661756c745f616972706f727473.elev AS C_5#2873, 'C_64656661756c745f616972706f727473.continent AS C_6#2874, 'C_64656661756c745f616972706f727473.country AS C_8#2875, 'C_64656661756c745f616972706f727473.region AS C_43#2876, 'C_64656661756c745f616972706f727473.city AS C_0#2877, 'C_64656661756c745f616972706f727473.iata AS C_1#2878, 'C_64656661756c745f616972706f727473.code AS C_11#2879, 'C_64656661756c745f616972706f727473.gps AS C_10#2880, ('round(('C_64656661756c745f616972706f727473.lat * 'power(10.0, 3)), 0) / 'power(10.0, 3)) AS C_4331#2881, ('round(('C_64656661756c745f616972706f727473.lon * 'power(10.0, 3)), 0) / 'power(10.0, 3)) AS C_4332#2882, ('round(('C_64656661756c745f616972706f727473.elev * 'power(10.0, 3)), 0) / 'power(10.0, 3)) AS C_4333#2883]
+- 'Filter ((('C_64656661756c745f616972706f727473.lon <= -104.05) AND ('C_64656661756c745f616972706f727473.lon >= -111.05)) AND (('C_64656661756c745f616972706f727473.lat >= 41.0) AND ('C_64656661756c745f616972706f727473.lat <= 45.0)))
+- 'SubqueryAlias C_64656661756c745f616972706f727473
+- 'UnresolvedRelation [default, airports], [], false
== Analyzed Logical Plan ==
C_25: string, C_22: string, C_19: string, C_16: double, C_18: double, C_13: double, C_21: string, C_20: string, C_17: string, C_14: string, C_12: string, C_24: string, C_15: string, C_23: double
GlobalLimit 5
+- LocalLimit 5
+- Sort [C_23#2897 DESC NULLS LAST], true
+- Project [C_9#2868 AS C_25#2884, C_2#2869 AS C_22#2885, C_7#2870 AS C_19#2886, C_4331#2881 AS C_16#2887, C_4332#2882 AS C_18#2888, C_4333#2883 AS C_13#2889, C_6#2874 AS C_21#2890, C_8#2875 AS C_20#2891, C_43#2876 AS C_17#2892, C_0#2877 AS C_14#2893, C_1#2878 AS C_12#2894, C_11#2879 AS C_24#2895, C_10#2880 AS C_15#2896, C_5#2873 AS C_23#2897]
+- SubqueryAlias C_4954424c
+- Project [id#2898 AS C_9#2868, type#2899 AS C_2#2869, name#2900 AS C_7#2870, lat#2901 AS C_3#2871, lon#2902 AS C_4#2872, elev#2903 AS C_5#2873, continent#2904 AS C_6#2874, country#2905 AS C_8#2875, region#2906 AS C_43#2876, city#2907 AS C_0#2877, iata#2908 AS C_1#2878, code#2909 AS C_11#2879, gps#2910 AS C_10#2880, (round((lat#2901 * POWER(10.0, cast(3 as double))), 0) / POWER(10.0, cast(3 as double))) AS C_4331#2881, (round((lon#2902 * POWER(10.0, cast(3 as double))), 0) / POWER(10.0, cast(3 as double))) AS C_4332#2882, (round((elev#2903 * POWER(10.0, cast(3 as double))), 0) / POWER(10.0, cast(3 as double))) AS C_4333#2883]
+- Filter (((lon#2902 <= -104.05) AND (lon#2902 >= -111.05)) AND ((lat#2901 >= 41.0) AND (lat#2901 <= 45.0)))
+- SubqueryAlias C_64656661756c745f616972706f727473
+- SubqueryAlias spark_catalog.default.airports
+- Relation spark_catalog.default.airports[id#2898,type#2899,name#2900,lat#2901,lon#2902,elev#2903,continent#2904,country#2905,region#2906,city#2907,iata#2908,code#2909,gps#2910] parquet
== Optimized Logical Plan ==
GlobalLimit 5
+- LocalLimit 5
+- Sort [C_23#2897 DESC NULLS LAST], true
+- Project [id#2898 AS C_25#2884, type#2899 AS C_22#2885, name#2900 AS C_19#2886, (round((lat#2901 * 1000.0), 0) / 1000.0) AS C_16#2887, (round((lon#2902 * 1000.0), 0) / 1000.0) AS C_18#2888, (round((elev#2903 * 1000.0), 0) / 1000.0) AS C_13#2889, continent#2904 AS C_21#2890, country#2905 AS C_20#2891, region#2906 AS C_17#2892, city#2907 AS C_14#2893, iata#2908 AS C_12#2894, code#2909 AS C_24#2895, gps#2910 AS C_15#2896, elev#2903 AS C_23#2897]
+- Filter ((isnotnull(lon#2902) AND isnotnull(lat#2901)) AND (((lon#2902 <= -104.05) AND (lon#2902 >= -111.05)) AND ((lat#2901 >= 41.0) AND (lat#2901 <= 45.0))))
+- Relation spark_catalog.default.airports[id#2898,type#2899,name#2900,lat#2901,lon#2902,elev#2903,continent#2904,country#2905,region#2906,city#2907,iata#2908,code#2909,gps#2910] parquet
== Physical Plan ==
TakeOrderedAndProject(limit=5, orderBy=[C_23#2897 DESC NULLS LAST], output=[C_25#2884,C_22#2885,C_19#2886,C_16#2887,C_18#2888,C_13#2889,C_21#2890,C_20#2891,C_17#2892,C_14#2893,C_12#2894,C_24#2895,C_15#2896,C_23#2897])
+- *(1) Project [id#2898 AS C_25#2884, type#2899 AS C_22#2885, name#2900 AS C_19#2886, (round((lat#2901 * 1000.0), 0) / 1000.0) AS C_16#2887, (round((lon#2902 * 1000.0), 0) / 1000.0) AS C_18#2888, (round((elev#2903 * 1000.0), 0) / 1000.0) AS C_13#2889, continent#2904 AS C_21#2890, country#2905 AS C_20#2891, region#2906 AS C_17#2892, city#2907 AS C_14#2893, iata#2908 AS C_12#2894, code#2909 AS C_24#2895, gps#2910 AS C_15#2896, elev#2903 AS C_23#2897]
+- *(1) Filter (((((isnotnull(lon#2902) AND isnotnull(lat#2901)) AND (lon#2902 <= -104.05)) AND (lon#2902 >= -111.05)) AND (lat#2901 >= 41.0)) AND (lat#2901 <= 45.0))
+- *(1) ColumnarToRow
+- FileScan parquet spark_catalog.default.airports[id#2898,type#2899,name#2900,lat#2901,lon#2902,elev#2903,continent#2904,country#2905,region#2906,city#2907,iata#2908,code#2909,gps#2910] Batched: true, DataFilters: [isnotnull(lon#2902), isnotnull(lat#2901), (lon#2902 <= -104.05), (lon#2902 >= -111.05), (lat#290..., Format: Parquet, Location: InMemoryFileIndex(1 paths)[file:/home/acdcadmin/spark-warehouse/airports], PartitionFilters: [], PushedFilters: [IsNotNull(lon), IsNotNull(lat), LessThanOrEqual(lon,-104.05), GreaterThanOrEqual(lon,-111.05), G..., ReadSchema: struct<id:string,type:string,name:string,lat:double,lon:double,elev:double,continent:string,count...
|
jonathan
|
|
0bf6ef0b-29be-47bc-ac42-32a3e198fd40
|
2025/06/13 22:51:51
|
2025/06/13 22:51:51
|
2025/06/13 22:51:51
|
11 ms
|
777 ms
|
Listing catalogs
|
CLOSED
|
|
jonathan
|
|
8081e0a0-fa1f-4bd2-a749-eebb493b1c08
|
2025/06/13 22:51:51
|
2025/06/13 22:51:51
|
2025/06/13 22:51:51
|
29 ms
|
357 ms
|
Listing databases 'catalog : , schemaPattern : null'
|
CLOSED
|
|
jonathan
|
|
215ae1d6-e907-4ea3-a95a-762cd54e7fb6
|
2025/06/13 22:51:52
|
2025/06/13 22:51:52
|
2025/06/13 22:51:52
|
38 ms
|
365 ms
|
SHOW TABLES IN `c3ba675f1fb64660ba4a90155b35924e`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'ShowTables [namespace#2941, tableName#2942, isTemporary#2943]
+- 'UnresolvedNamespace [c3ba675f1fb64660ba4a90155b35924e]
== Analyzed Logical Plan ==
namespace: string, tableName: string, isTemporary: boolean
ShowTables [namespace#2941, tableName#2942, isTemporary#2943]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [c3ba675f1fb64660ba4a90155b35924e]
== Optimized Logical Plan ==
CommandResult [namespace#2941, tableName#2942, isTemporary#2943], ShowTables [namespace#2941, tableName#2942, isTemporary#2943], V2SessionCatalog(spark_catalog), [c3ba675f1fb64660ba4a90155b35924e], [[0,2000000020,400000000c,0,6635373661623363,3036363436626631,3531303961346162,6534323935336235,69746e656469796d,72656966]]
+- ShowTables [namespace#2941, tableName#2942, isTemporary#2943]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [c3ba675f1fb64660ba4a90155b35924e]
== Physical Plan ==
CommandResult [namespace#2941, tableName#2942, isTemporary#2943]
+- ShowTables [namespace#2941, tableName#2942, isTemporary#2943], V2SessionCatalog(spark_catalog), [c3ba675f1fb64660ba4a90155b35924e]
|
jonathan
|
|
f9358d8e-5868-443d-af86-f9f24842f4a8
|
2025/06/13 22:51:52
|
2025/06/13 22:51:52
|
2025/06/13 22:51:52
|
51 ms
|
329 ms
|
SHOW TABLES IN `default`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'ShowTables [namespace#2961, tableName#2962, isTemporary#2963]
+- 'UnresolvedNamespace [default]
== Analyzed Logical Plan ==
namespace: string, tableName: string, isTemporary: boolean
ShowTables [namespace#2961, tableName#2962, isTemporary#2963]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [default]
== Optimized Logical Plan ==
CommandResult [namespace#2961, tableName#2962, isTemporary#2963], ShowTables [namespace#2961, tableName#2962, isTemporary#2963], V2SessionCatalog(spark_catalog), [default], [[0,2000000007,2800000008,0,746c7561666564,7374726f70726961], [0,2000000007,2800000008,0,746c7561666564,73657079746c6c61], [0,2000000007,2800000009,0,746c7561666564,73657079746c6c61,32], [0,2000000007,280000000d,0,746c7561666564,73657079746c6c61,6369736162], [0,2000000007,280000000e,0,746c7561666564,73657079746c6c61,326369736162], [0,2000000007,2800000009,0,746c7561666564,7079747961727261,65], [0,2000000007,280000000a,0,746c7561666564,7974746e69676962,6570], [0,2000000007,280000000a,0,746c7561666564,79747972616e6962,6570], [0,2000000007,2800000008,0,746c7561666564,6570797465746164], [0,2000000007,280000000b,0,746c7561666564,746c616d69636564,657079], [0,2000000007,2800000009,0,746c7561666564,70797474616f6c66,65], [0,2000000007,2800000008,0,746c7561666564,736570797470616d], [0,2000000007,280000000b,0,746c7561666564,646978617463796e,617461], [0,2000000007,280000000f,0,746c7561666564,746978617463796e,61746164706972], [0,2000000007,2800000010,0,746c7561666564,7365745f656d6f73,32656c6261745f74], [0,2000000007,280000000a,0,746c7561666564,7974746375727473,6570], [0,2000000007,280000000e,0,746c7561666564,656e6f7a69786174,70756b6f6f6c], [0,2000000007,280000000c,0,746c7561666564,74676e696b726f77,73657079], [0,2000000007,2800000016,0,746c7561666564,74676e696b726f77,6874697773657079,7265626d756e]]
+- ShowTables [namespace#2961, tableName#2962, isTemporary#2963]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [default]
== Physical Plan ==
CommandResult [namespace#2961, tableName#2962, isTemporary#2963]
+- ShowTables [namespace#2961, tableName#2962, isTemporary#2963], V2SessionCatalog(spark_catalog), [default]
|
jonathan
|
|
bcc16f8c-edd3-4141-87ec-368a4f20cc6c
|
2025/06/13 22:51:53
|
2025/06/13 22:51:53
|
2025/06/13 22:51:53
|
26 ms
|
335 ms
|
SHOW TABLES IN `onetableschema`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'ShowTables [namespace#2981, tableName#2982, isTemporary#2983]
+- 'UnresolvedNamespace [onetableschema]
== Analyzed Logical Plan ==
namespace: string, tableName: string, isTemporary: boolean
ShowTables [namespace#2981, tableName#2982, isTemporary#2983]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [onetableschema]
== Optimized Logical Plan ==
CommandResult [namespace#2981, tableName#2982, isTemporary#2983], ShowTables [namespace#2981, tableName#2982, isTemporary#2983], V2SessionCatalog(spark_catalog), [onetableschema], [[0,200000000e,300000000c,0,656c626174656e6f,616d65686373,73657079746c6c61,74736574]]
+- ShowTables [namespace#2981, tableName#2982, isTemporary#2983]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [onetableschema]
== Physical Plan ==
CommandResult [namespace#2981, tableName#2982, isTemporary#2983]
+- ShowTables [namespace#2981, tableName#2982, isTemporary#2983], V2SessionCatalog(spark_catalog), [onetableschema]
|
jonathan
|
|
49ebf4e0-34db-4e16-8552-40f05c9b3765
|
2025/06/13 22:51:53
|
2025/06/13 22:51:53
|
2025/06/13 22:51:53
|
20 ms
|
338 ms
|
SHOW TABLES IN `test`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'ShowTables [namespace#3001, tableName#3002, isTemporary#3003]
+- 'UnresolvedNamespace [test]
== Analyzed Logical Plan ==
namespace: string, tableName: string, isTemporary: boolean
ShowTables [namespace#3001, tableName#3002, isTemporary#3003]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [test]
== Optimized Logical Plan ==
CommandResult [namespace#3001, tableName#3002, isTemporary#3003], ShowTables [namespace#3001, tableName#3002, isTemporary#3003], V2SessionCatalog(spark_catalog), [test]
+- ShowTables [namespace#3001, tableName#3002, isTemporary#3003]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [test]
== Physical Plan ==
CommandResult <empty>, [namespace#3001, tableName#3002, isTemporary#3003]
+- ShowTables [namespace#3001, tableName#3002, isTemporary#3003], V2SessionCatalog(spark_catalog), [test]
|
jonathan
|
|
f62ad77d-f169-48df-bce1-bdbabab8b106
|
2025/06/13 22:51:53
|
2025/06/13 22:51:53
|
2025/06/13 22:51:54
|
11 ms
|
321 ms
|
SHOW TABLES IN `global_temp`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'ShowTables [namespace#3011, tableName#3012, isTemporary#3013]
+- 'UnresolvedNamespace [global_temp]
== Analyzed Logical Plan ==
namespace: string, tableName: string, isTemporary: boolean
ShowTables [namespace#3011, tableName#3012, isTemporary#3013]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [global_temp]
== Optimized Logical Plan ==
CommandResult [namespace#3011, tableName#3012, isTemporary#3013], ShowTables [namespace#3011, tableName#3012, isTemporary#3013], V2SessionCatalog(spark_catalog), [global_temp]
+- ShowTables [namespace#3011, tableName#3012, isTemporary#3013]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [global_temp]
== Physical Plan ==
CommandResult <empty>, [namespace#3011, tableName#3012, isTemporary#3013]
+- ShowTables [namespace#3011, tableName#3012, isTemporary#3013], V2SessionCatalog(spark_catalog), [global_temp]
|
jonathan
|
|
44261df9-dd24-46c0-8629-c0e5c44b8ebf
|
2025/06/13 22:54:09
|
2025/06/13 22:54:09
|
2025/06/13 22:54:10
|
1 ms
|
753 ms
|
Listing catalogs
|
CLOSED
|
|
jonathan
|
|
98a0c092-b2d5-4d49-be3a-4740a60763fb
|
2025/06/13 22:54:10
|
2025/06/13 22:54:10
|
2025/06/13 22:54:10
|
24 ms
|
350 ms
|
Listing databases 'catalog : , schemaPattern : null'
|
CLOSED
|
|
jonathan
|
|
35f04b2d-808f-4f23-b9f6-508233a04899
|
2025/06/13 22:54:10
|
2025/06/13 22:54:11
|
2025/06/13 22:54:11
|
50 ms
|
375 ms
|
SHOW TABLES IN `c3ba675f1fb64660ba4a90155b35924e`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'ShowTables [namespace#3021, tableName#3022, isTemporary#3023]
+- 'UnresolvedNamespace [c3ba675f1fb64660ba4a90155b35924e]
== Analyzed Logical Plan ==
namespace: string, tableName: string, isTemporary: boolean
ShowTables [namespace#3021, tableName#3022, isTemporary#3023]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [c3ba675f1fb64660ba4a90155b35924e]
== Optimized Logical Plan ==
CommandResult [namespace#3021, tableName#3022, isTemporary#3023], ShowTables [namespace#3021, tableName#3022, isTemporary#3023], V2SessionCatalog(spark_catalog), [c3ba675f1fb64660ba4a90155b35924e], [[0,2000000020,400000000c,0,6635373661623363,3036363436626631,3531303961346162,6534323935336235,69746e656469796d,72656966]]
+- ShowTables [namespace#3021, tableName#3022, isTemporary#3023]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [c3ba675f1fb64660ba4a90155b35924e]
== Physical Plan ==
CommandResult [namespace#3021, tableName#3022, isTemporary#3023]
+- ShowTables [namespace#3021, tableName#3022, isTemporary#3023], V2SessionCatalog(spark_catalog), [c3ba675f1fb64660ba4a90155b35924e]
|
jonathan
|
|
639315b9-5fb3-48fb-a136-577613f544f8
|
2025/06/13 22:54:11
|
2025/06/13 22:54:11
|
2025/06/13 22:54:11
|
48 ms
|
318 ms
|
SHOW TABLES IN `default`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'ShowTables [namespace#3041, tableName#3042, isTemporary#3043]
+- 'UnresolvedNamespace [default]
== Analyzed Logical Plan ==
namespace: string, tableName: string, isTemporary: boolean
ShowTables [namespace#3041, tableName#3042, isTemporary#3043]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [default]
== Optimized Logical Plan ==
CommandResult [namespace#3041, tableName#3042, isTemporary#3043], ShowTables [namespace#3041, tableName#3042, isTemporary#3043], V2SessionCatalog(spark_catalog), [default], [[0,2000000007,2800000008,0,746c7561666564,7374726f70726961], [0,2000000007,2800000008,0,746c7561666564,73657079746c6c61], [0,2000000007,2800000009,0,746c7561666564,73657079746c6c61,32], [0,2000000007,280000000d,0,746c7561666564,73657079746c6c61,6369736162], [0,2000000007,280000000e,0,746c7561666564,73657079746c6c61,326369736162], [0,2000000007,2800000009,0,746c7561666564,7079747961727261,65], [0,2000000007,280000000a,0,746c7561666564,7974746e69676962,6570], [0,2000000007,280000000a,0,746c7561666564,79747972616e6962,6570], [0,2000000007,2800000008,0,746c7561666564,6570797465746164], [0,2000000007,280000000b,0,746c7561666564,746c616d69636564,657079], [0,2000000007,2800000009,0,746c7561666564,70797474616f6c66,65], [0,2000000007,2800000008,0,746c7561666564,736570797470616d], [0,2000000007,280000000b,0,746c7561666564,646978617463796e,617461], [0,2000000007,280000000f,0,746c7561666564,746978617463796e,61746164706972], [0,2000000007,2800000010,0,746c7561666564,7365745f656d6f73,32656c6261745f74], [0,2000000007,280000000a,0,746c7561666564,7974746375727473,6570], [0,2000000007,280000000e,0,746c7561666564,656e6f7a69786174,70756b6f6f6c], [0,2000000007,280000000c,0,746c7561666564,74676e696b726f77,73657079], [0,2000000007,2800000016,0,746c7561666564,74676e696b726f77,6874697773657079,7265626d756e]]
+- ShowTables [namespace#3041, tableName#3042, isTemporary#3043]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [default]
== Physical Plan ==
CommandResult [namespace#3041, tableName#3042, isTemporary#3043]
+- ShowTables [namespace#3041, tableName#3042, isTemporary#3043], V2SessionCatalog(spark_catalog), [default]
|
jonathan
|
|
fe2eeb0c-fe37-4f9f-849d-846445773af0
|
2025/06/13 22:54:11
|
2025/06/13 22:54:11
|
2025/06/13 22:54:12
|
26 ms
|
345 ms
|
SHOW TABLES IN `onetableschema`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'ShowTables [namespace#3061, tableName#3062, isTemporary#3063]
+- 'UnresolvedNamespace [onetableschema]
== Analyzed Logical Plan ==
namespace: string, tableName: string, isTemporary: boolean
ShowTables [namespace#3061, tableName#3062, isTemporary#3063]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [onetableschema]
== Optimized Logical Plan ==
CommandResult [namespace#3061, tableName#3062, isTemporary#3063], ShowTables [namespace#3061, tableName#3062, isTemporary#3063], V2SessionCatalog(spark_catalog), [onetableschema], [[0,200000000e,300000000c,0,656c626174656e6f,616d65686373,73657079746c6c61,74736574]]
+- ShowTables [namespace#3061, tableName#3062, isTemporary#3063]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [onetableschema]
== Physical Plan ==
CommandResult [namespace#3061, tableName#3062, isTemporary#3063]
+- ShowTables [namespace#3061, tableName#3062, isTemporary#3063], V2SessionCatalog(spark_catalog), [onetableschema]
|
jonathan
|
|
2952ca04-a82d-4b6f-bba3-517aa8866d70
|
2025/06/13 22:54:12
|
2025/06/13 22:54:12
|
2025/06/13 22:54:12
|
27 ms
|
361 ms
|
SHOW TABLES IN `test`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'ShowTables [namespace#3081, tableName#3082, isTemporary#3083]
+- 'UnresolvedNamespace [test]
== Analyzed Logical Plan ==
namespace: string, tableName: string, isTemporary: boolean
ShowTables [namespace#3081, tableName#3082, isTemporary#3083]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [test]
== Optimized Logical Plan ==
CommandResult [namespace#3081, tableName#3082, isTemporary#3083], ShowTables [namespace#3081, tableName#3082, isTemporary#3083], V2SessionCatalog(spark_catalog), [test]
+- ShowTables [namespace#3081, tableName#3082, isTemporary#3083]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [test]
== Physical Plan ==
CommandResult <empty>, [namespace#3081, tableName#3082, isTemporary#3083]
+- ShowTables [namespace#3081, tableName#3082, isTemporary#3083], V2SessionCatalog(spark_catalog), [test]
|
jonathan
|
|
d00ae85e-1e66-4e4b-81de-74575d789d5f
|
2025/06/13 22:54:12
|
2025/06/13 22:54:12
|
2025/06/13 22:54:13
|
12 ms
|
335 ms
|
SHOW TABLES IN `global_temp`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'ShowTables [namespace#3091, tableName#3092, isTemporary#3093]
+- 'UnresolvedNamespace [global_temp]
== Analyzed Logical Plan ==
namespace: string, tableName: string, isTemporary: boolean
ShowTables [namespace#3091, tableName#3092, isTemporary#3093]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [global_temp]
== Optimized Logical Plan ==
CommandResult [namespace#3091, tableName#3092, isTemporary#3093], ShowTables [namespace#3091, tableName#3092, isTemporary#3093], V2SessionCatalog(spark_catalog), [global_temp]
+- ShowTables [namespace#3091, tableName#3092, isTemporary#3093]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [global_temp]
== Physical Plan ==
CommandResult <empty>, [namespace#3091, tableName#3092, isTemporary#3093]
+- ShowTables [namespace#3091, tableName#3092, isTemporary#3093], V2SessionCatalog(spark_catalog), [global_temp]
|
jonathan
|
|
d46e6094-0887-4e91-bfc4-bfd910f7945a
|
2025/06/13 23:12:39
|
2025/06/13 23:12:39
|
2025/06/13 23:12:39
|
82 ms
|
666 ms
|
DESCRIBE TABLE `default`.`AllTypes`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'DescribeRelation false, [col_name#3101, data_type#3102, comment#3103]
+- 'UnresolvedTableOrView [default, AllTypes], DESCRIBE TABLE, true
== Analyzed Logical Plan ==
col_name: string, data_type: string, comment: string
DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3101, data_type#3102, comment#3103]
== Optimized Logical Plan ==
CommandResult [col_name#3101, data_type#3102, comment#3103], Execute DescribeTableCommand, [[STRING,string,null], [DOUBLE,double,null], [INTEGER,int,null], [BIGINT,bigint,null], [FLOAT,float,null], [DECIMAL,decimal(10,2),null], [NUMBER,decimal(10,2),null], [BOOLEAN,boolean,null], [DATE,date,null], [TIMESTAMP,timestamp,null], [DATETIME,timestamp,null], [BINARY,binary,null], [ARRAY,array<int>,null], [MAP,map<string,string>,null], [STRUCT,struct<field1:string,field2:int>,null], [VARCHAR,string,null], [CHAR,string,null]]
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3101, data_type#3102, comment#3103]
== Physical Plan ==
CommandResult [col_name#3101, data_type#3102, comment#3103]
+- Execute DescribeTableCommand
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3101, data_type#3102, comment#3103]
|
jonathan
|
|
f84c29a7-332d-4049-9e1c-1562b019fee5
|
2025/06/13 23:13:23
|
2025/06/13 23:13:23
|
2025/06/13 23:13:23
|
78 ms
|
347 ms
|
DESCRIBE TABLE `default`.`AllTypes`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'DescribeRelation false, [col_name#3128, data_type#3129, comment#3130]
+- 'UnresolvedTableOrView [default, AllTypes], DESCRIBE TABLE, true
== Analyzed Logical Plan ==
col_name: string, data_type: string, comment: string
DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3128, data_type#3129, comment#3130]
== Optimized Logical Plan ==
CommandResult [col_name#3128, data_type#3129, comment#3130], Execute DescribeTableCommand, [[STRING,string,null], [DOUBLE,double,null], [INTEGER,int,null], [BIGINT,bigint,null], [FLOAT,float,null], [DECIMAL,decimal(10,2),null], [NUMBER,decimal(10,2),null], [BOOLEAN,boolean,null], [DATE,date,null], [TIMESTAMP,timestamp,null], [DATETIME,timestamp,null], [BINARY,binary,null], [ARRAY,array<int>,null], [MAP,map<string,string>,null], [STRUCT,struct<field1:string,field2:int>,null], [VARCHAR,string,null], [CHAR,string,null]]
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3128, data_type#3129, comment#3130]
== Physical Plan ==
CommandResult [col_name#3128, data_type#3129, comment#3130]
+- Execute DescribeTableCommand
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3128, data_type#3129, comment#3130]
|
jonathan
|
|
4f0e028f-5895-4e97-9391-b34a1403a426
|
2025/06/13 23:13:23
|
2025/06/13 23:13:23
|
2025/06/13 23:13:24
|
65 ms
|
329 ms
|
DESCRIBE TABLE `default`.`AllTypes`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'DescribeRelation false, [col_name#3155, data_type#3156, comment#3157]
+- 'UnresolvedTableOrView [default, AllTypes], DESCRIBE TABLE, true
== Analyzed Logical Plan ==
col_name: string, data_type: string, comment: string
DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3155, data_type#3156, comment#3157]
== Optimized Logical Plan ==
CommandResult [col_name#3155, data_type#3156, comment#3157], Execute DescribeTableCommand, [[STRING,string,null], [DOUBLE,double,null], [INTEGER,int,null], [BIGINT,bigint,null], [FLOAT,float,null], [DECIMAL,decimal(10,2),null], [NUMBER,decimal(10,2),null], [BOOLEAN,boolean,null], [DATE,date,null], [TIMESTAMP,timestamp,null], [DATETIME,timestamp,null], [BINARY,binary,null], [ARRAY,array<int>,null], [MAP,map<string,string>,null], [STRUCT,struct<field1:string,field2:int>,null], [VARCHAR,string,null], [CHAR,string,null]]
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3155, data_type#3156, comment#3157]
== Physical Plan ==
CommandResult [col_name#3155, data_type#3156, comment#3157]
+- Execute DescribeTableCommand
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3155, data_type#3156, comment#3157]
|
jonathan
|
|
abca4d7a-53c4-445b-9949-636e829c05fd
|
2025/06/13 23:19:33
|
2025/06/13 23:19:33
|
2025/06/13 23:19:33
|
83 ms
|
383 ms
|
DESCRIBE TABLE `default`.`AllTypes`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'DescribeRelation false, [col_name#3182, data_type#3183, comment#3184]
+- 'UnresolvedTableOrView [default, AllTypes], DESCRIBE TABLE, true
== Analyzed Logical Plan ==
col_name: string, data_type: string, comment: string
DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3182, data_type#3183, comment#3184]
== Optimized Logical Plan ==
CommandResult [col_name#3182, data_type#3183, comment#3184], Execute DescribeTableCommand, [[STRING,string,null], [DOUBLE,double,null], [INTEGER,int,null], [BIGINT,bigint,null], [FLOAT,float,null], [DECIMAL,decimal(10,2),null], [NUMBER,decimal(10,2),null], [BOOLEAN,boolean,null], [DATE,date,null], [TIMESTAMP,timestamp,null], [DATETIME,timestamp,null], [BINARY,binary,null], [ARRAY,array<int>,null], [MAP,map<string,string>,null], [STRUCT,struct<field1:string,field2:int>,null], [VARCHAR,string,null], [CHAR,string,null]]
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3182, data_type#3183, comment#3184]
== Physical Plan ==
CommandResult [col_name#3182, data_type#3183, comment#3184]
+- Execute DescribeTableCommand
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3182, data_type#3183, comment#3184]
|
jonathan
|
|
94009925-9452-4054-af2b-357089a04203
|
2025/06/13 23:19:33
|
2025/06/13 23:19:33
|
2025/06/13 23:19:33
|
64 ms
|
333 ms
|
DESCRIBE TABLE `default`.`AllTypes`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'DescribeRelation false, [col_name#3209, data_type#3210, comment#3211]
+- 'UnresolvedTableOrView [default, AllTypes], DESCRIBE TABLE, true
== Analyzed Logical Plan ==
col_name: string, data_type: string, comment: string
DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3209, data_type#3210, comment#3211]
== Optimized Logical Plan ==
CommandResult [col_name#3209, data_type#3210, comment#3211], Execute DescribeTableCommand, [[STRING,string,null], [DOUBLE,double,null], [INTEGER,int,null], [BIGINT,bigint,null], [FLOAT,float,null], [DECIMAL,decimal(10,2),null], [NUMBER,decimal(10,2),null], [BOOLEAN,boolean,null], [DATE,date,null], [TIMESTAMP,timestamp,null], [DATETIME,timestamp,null], [BINARY,binary,null], [ARRAY,array<int>,null], [MAP,map<string,string>,null], [STRUCT,struct<field1:string,field2:int>,null], [VARCHAR,string,null], [CHAR,string,null]]
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3209, data_type#3210, comment#3211]
== Physical Plan ==
CommandResult [col_name#3209, data_type#3210, comment#3211]
+- Execute DescribeTableCommand
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3209, data_type#3210, comment#3211]
|
jonathon
|
|
339b74a3-7492-4035-b9f6-bfff4a4916de
|
2025/06/13 23:20:55
|
2025/06/13 23:20:55
|
2025/06/13 23:20:55
|
40 ms
|
184 ms
|
set -v
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
SetCommand (-v,None)
== Analyzed Logical Plan ==
key: string, value: string, meaning: string, Since version: string
SetCommand (-v,None)
== Optimized Logical Plan ==
CommandResult [key#3236, value#3237, meaning#3238, Since version#3239], Execute SetCommand, [[spark.sql.adaptive.advisoryPartitionSizeInBytes,<value of spark.sql.adaptive.shuffle.targetPostShuffleInputSize>,The advisory size in bytes of the shuffle partition during adaptive optimization (when spark.sql.adaptive.enabled is true). It takes effect when Spark coalesces small shuffle partitions or splits skewed shuffle partition.,3.0.0], [spark.sql.adaptive.autoBroadcastJoinThreshold,<undefined>,Configures the maximum size in bytes for a table that will be broadcast to all worker nodes when performing a join. By setting this value to -1 broadcasting can be disabled. The default value is same with spark.sql.autoBroadcastJoinThreshold. Note that, this config is used only in adaptive framework.,3.2.0], [spark.sql.adaptive.coalescePartitions.enabled,true,When true and 'spark.sql.adaptive.enabled' is true, Spark will coalesce contiguous shuffle partitions according to the target size (specified by 'spark.sql.adaptive.advisoryPartitionSizeInBytes'), to avoid too many small tasks.,3.0.0], [spark.sql.adaptive.coalescePartitions.initialPartitionNum,<undefined>,The initial number of shuffle partitions before coalescing. If not set, it equals to spark.sql.shuffle.partitions. This configuration only has an effect when 'spark.sql.adaptive.enabled' and 'spark.sql.adaptive.coalescePartitions.enabled' are both true.,3.0.0], [spark.sql.adaptive.coalescePartitions.minPartitionSize,1MB,The minimum size of shuffle partitions after coalescing. This is useful when the adaptively calculated target size is too small during partition coalescing.,3.2.0], [spark.sql.adaptive.coalescePartitions.parallelismFirst,true,When true, Spark does not respect the target size specified by 'spark.sql.adaptive.advisoryPartitionSizeInBytes' (default 64MB) when coalescing contiguous shuffle partitions, but adaptively calculate the target size according to the default parallelism of the Spark cluster. The calculated size is usually smaller than the configured target size. This is to maximize the parallelism and avoid performance regression when enabling adaptive query execution. It's recommended to set this config to false and respect the configured target size.,3.2.0], [spark.sql.adaptive.customCostEvaluatorClass,<undefined>,The custom cost evaluator class to be used for adaptive execution. If not being set, Spark will use its own SimpleCostEvaluator by default.,3.2.0], [spark.sql.adaptive.enabled,true,When true, enable adaptive query execution, which re-optimizes the query plan in the middle of query execution, based on accurate runtime statistics.,1.6.0], [spark.sql.adaptive.forceOptimizeSkewedJoin,false,When true, force enable OptimizeSkewedJoin even if it introduces extra shuffle.,3.3.0], [spark.sql.adaptive.localShuffleReader.enabled,true,When true and 'spark.sql.adaptive.enabled' is true, Spark tries to use local shuffle reader to read the shuffle data when the shuffle partitioning is not needed, for example, after converting sort-merge join to broadcast-hash join.,3.0.0], [spark.sql.adaptive.maxShuffledHashJoinLocalMapThreshold,0b,Configures the maximum size in bytes per partition that can be allowed to build local hash map. If this value is not smaller than spark.sql.adaptive.advisoryPartitionSizeInBytes and all the partition size are not larger than this config, join selection prefer to use shuffled hash join instead of sort merge join regardless of the value of spark.sql.join.preferSortMergeJoin.,3.2.0], [spark.sql.adaptive.optimizeSkewsInRebalancePartitions.enabled,true,When true and 'spark.sql.adaptive.enabled' is true, Spark will optimize the skewed shuffle partitions in RebalancePartitions and split them to smaller ones according to the target size (specified by 'spark.sql.adaptive.advisoryPartitionSizeInBytes'), to avoid data skew.,3.2.0], [spark.sql.adaptive.optimizer.excludedRules,<undefined>,Configures a list of rules to be disabled in the adaptive optimizer, in which the rules are specified by their rule names and separated by comma. The optimizer will log the rules that have indeed been excluded.,3.1.0], [spark.sql.adaptive.rebalancePartitionsSmallPartitionFactor,0.2,A partition will be merged during splitting if its size is small than this factor multiply spark.sql.adaptive.advisoryPartitionSizeInBytes.,3.3.0], [spark.sql.adaptive.skewJoin.enabled,true,When true and 'spark.sql.adaptive.enabled' is true, Spark dynamically handles skew in shuffled join (sort-merge and shuffled hash) by splitting (and replicating if needed) skewed partitions.,3.0.0], [spark.sql.adaptive.skewJoin.skewedPartitionFactor,5.0,A partition is considered as skewed if its size is larger than this factor multiplying the median partition size and also larger than 'spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes',3.0.0], [spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes,256MB,A partition is considered as skewed if its size in bytes is larger than this threshold and also larger than 'spark.sql.adaptive.skewJoin.skewedPartitionFactor' multiplying the median partition size. Ideally this config should be set larger than 'spark.sql.adaptive.advisoryPartitionSizeInBytes'.,3.0.0], [spark.sql.allowNamedFunctionArguments,true,If true, Spark will turn on support for named parameters for all functions that has it implemented.,3.5.0], [spark.sql.ansi.doubleQuotedIdentifiers,false,When true and 'spark.sql.ansi.enabled' is true, Spark SQL reads literals enclosed in double quoted (") as identifiers. When false they are read as string literals.,3.4.0], [spark.sql.ansi.enabled,false,When true, Spark SQL uses an ANSI compliant dialect instead of being Hive compliant. For example, Spark will throw an exception at runtime instead of returning null results when the inputs to a SQL operator/function are invalid.For full details of this dialect, you can find them in the section "ANSI Compliance" of Spark's documentation. Some ANSI dialect features may be not from the ANSI SQL standard directly, but their behaviors align with ANSI SQL's style,3.0.0], [spark.sql.ansi.enforceReservedKeywords,false,When true and 'spark.sql.ansi.enabled' is true, the Spark SQL parser enforces the ANSI reserved keywords and forbids SQL queries that use reserved keywords as alias names and/or identifiers for table, view, function, etc.,3.3.0], [spark.sql.ansi.relationPrecedence,false,When true and 'spark.sql.ansi.enabled' is true, JOIN takes precedence over comma when combining relation. For example, `t1, t2 JOIN t3` should result to `t1 X (t2 X t3)`. If the config is false, the result is `(t1 X t2) X t3`.,3.4.0], [spark.sql.autoBroadcastJoinThreshold,10MB,Configures the maximum size in bytes for a table that will be broadcast to all worker nodes when performing a join. By setting this value to -1 broadcasting can be disabled. Note that currently statistics are only supported for Hive Metastore tables where the command `ANALYZE TABLE <tableName> COMPUTE STATISTICS noscan` has been run, and file-based data source tables where the statistics are computed directly on the files of data.,1.1.0], [spark.sql.avro.compression.codec,snappy,Compression codec used in writing of AVRO files. Supported codecs: uncompressed, deflate, snappy, bzip2, xz and zstandard. Default codec is snappy.,2.4.0], ... 183 more fields]
+- SetCommand (-v,None)
== Physical Plan ==
CommandResult [key#3236, value#3237, meaning#3238, Since version#3239]
+- Execute SetCommand
+- SetCommand (-v,None)
|
jonathon
|
|
7e52e6cd-b958-4c5c-b831-6a246dd98439
|
2025/06/13 23:20:55
|
2025/06/13 23:20:55
|
2025/06/13 23:20:55
|
232 ms
|
327 ms
|
Listing tables 'catalog : null, schemaPattern : %, tableTypes : null, tableName : %'
|
CLOSED
|
|
jonathon
|
|
d8e08b2c-1486-4408-b18e-49868f58bf30
|
2025/06/13 23:20:55
|
2025/06/13 23:20:55
|
2025/06/13 23:20:55
|
26 ms
|
121 ms
|
Listing columns 'catalog : null, schemaPattern : default, tablePattern : airports, columnName : null'
|
CLOSED
|
|
jonathon
|
|
25c0dc0c-2918-46d9-b142-a73770f16321
|
2025/06/13 23:20:56
|
2025/06/13 23:20:56
|
2025/06/13 23:20:56
|
85 ms
|
182 ms
|
DESCRIBE default.airports
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'DescribeRelation false, [col_name#3261, data_type#3262, comment#3263]
+- 'UnresolvedTableOrView [default, airports], DESCRIBE TABLE, true
== Analyzed Logical Plan ==
col_name: string, data_type: string, comment: string
DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#3261, data_type#3262, comment#3263]
== Optimized Logical Plan ==
CommandResult [col_name#3261, data_type#3262, comment#3263], Execute DescribeTableCommand, [[id,string,null], [type,string,null], [name,string,null], [lat,double,null], [lon,double,null], [elev,double,null], [continent,string,null], [country,string,null], [region,string,null], [city,string,null], [iata,string,null], [code,string,null], [gps,string,null]]
+- DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#3261, data_type#3262, comment#3263]
== Physical Plan ==
CommandResult [col_name#3261, data_type#3262, comment#3263]
+- Execute DescribeTableCommand
+- DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#3261, data_type#3262, comment#3263]
|
jonathon
|
|
71efc595-91a8-4084-ad08-c1f50a5b6952
|
2025/06/13 23:20:56
|
2025/06/13 23:20:56
|
2025/06/13 23:20:56
|
80 ms
|
177 ms
|
DESCRIBE default.airports
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'DescribeRelation false, [col_name#3284, data_type#3285, comment#3286]
+- 'UnresolvedTableOrView [default, airports], DESCRIBE TABLE, true
== Analyzed Logical Plan ==
col_name: string, data_type: string, comment: string
DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#3284, data_type#3285, comment#3286]
== Optimized Logical Plan ==
CommandResult [col_name#3284, data_type#3285, comment#3286], Execute DescribeTableCommand, [[id,string,null], [type,string,null], [name,string,null], [lat,double,null], [lon,double,null], [elev,double,null], [continent,string,null], [country,string,null], [region,string,null], [city,string,null], [iata,string,null], [code,string,null], [gps,string,null]]
+- DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#3284, data_type#3285, comment#3286]
== Physical Plan ==
CommandResult [col_name#3284, data_type#3285, comment#3286]
+- Execute DescribeTableCommand
+- DescribeTableCommand `spark_catalog`.`default`.`airports`, false, [col_name#3284, data_type#3285, comment#3286]
|
jonathon
|
|
9fc768ea-28aa-40a0-a236-dbae9669cc6c
|
2025/06/13 23:20:56
|
2025/06/13 23:20:56
|
2025/06/13 23:20:56
|
22 ms
|
117 ms
|
Listing columns 'catalog : null, schemaPattern : default, tablePattern : airports, columnName : null'
|
CLOSED
|
|
jonathon
|
[38]
|
17b645b6-20fb-40fb-bd88-8bff22d539bd
|
2025/06/13 23:20:56
|
2025/06/13 23:20:56
|
2025/06/13 23:20:56
|
185 ms
|
283 ms
|
SELECT C_0 AS C_13, C_43 AS C_14, C_5 AS C_15, C_4331 AS C_16, C_4332 AS C_12, C_4333 AS C_17, C_1 AS C_18, C_6 AS C_21, C_7 AS C_19, C_8 AS C_20, C_10 AS C_23, C_9 AS C_24, C_11 AS C_25, C_4 AS C_22 FROM (SELECT C_64656661756c745f616972706f727473.`id` AS C_0, C_64656661756c745f616972706f727473.`type` AS C_43, C_64656661756c745f616972706f727473.`name` AS C_5, C_64656661756c745f616972706f727473.`lat` AS C_3, C_64656661756c745f616972706f727473.`lon` AS C_2, C_64656661756c745f616972706f727473.`elev` AS C_4, C_64656661756c745f616972706f727473.`continent` AS C_1, C_64656661756c745f616972706f727473.`country` AS C_6, C_64656661756c745f616972706f727473.`region` AS C_7, C_64656661756c745f616972706f727473.`city` AS C_8, C_64656661756c745f616972706f727473.`iata` AS C_10, C_64656661756c745f616972706f727473.`code` AS C_9, C_64656661756c745f616972706f727473.`gps` AS C_11, (round((C_64656661756c745f616972706f727473.`lat` * power(1.000000000000000E+001, 3)), 0) / power(1.000000000000000E+001, 3)) AS C_4331, (round((C_64656661756c745f616972706f727473.`lon` * power(1.000000000000000E+001, 3)), 0) / power(1.000000000000000E+001, 3)) AS C_4332, (round((C_64656661756c745f616972706f727473.`elev` * power(1.000000000000000E+001, 3)), 0) / power(1.000000000000000E+001, 3)) AS C_4333 FROM `default`.`airports` C_64656661756c745f616972706f727473 WHERE ((C_64656661756c745f616972706f727473.`lon` <= (- 1.040500000000000E+002)) AND (C_64656661756c745f616972706f727473.`lon` >= (- 1.110500000000000E+002)) AND (C_64656661756c745f616972706f727473.`lat` >= 4.100000000000000E+001) AND (C_64656661756c745f616972706f727473.`lat` <= 4.500000000000000E+001)) ) C_4954424c ORDER BY C_22 DESC LIMIT 5
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'GlobalLimit 5
+- 'LocalLimit 5
+- 'Sort ['C_22 DESC NULLS LAST], true
+- 'Project ['C_0 AS C_13#3323, 'C_43 AS C_14#3324, 'C_5 AS C_15#3325, 'C_4331 AS C_16#3326, 'C_4332 AS C_12#3327, 'C_4333 AS C_17#3328, 'C_1 AS C_18#3329, 'C_6 AS C_21#3330, 'C_7 AS C_19#3331, 'C_8 AS C_20#3332, 'C_10 AS C_23#3333, 'C_9 AS C_24#3334, 'C_11 AS C_25#3335, 'C_4 AS C_22#3336]
+- 'SubqueryAlias C_4954424c
+- 'Project ['C_64656661756c745f616972706f727473.id AS C_0#3307, 'C_64656661756c745f616972706f727473.type AS C_43#3308, 'C_64656661756c745f616972706f727473.name AS C_5#3309, 'C_64656661756c745f616972706f727473.lat AS C_3#3310, 'C_64656661756c745f616972706f727473.lon AS C_2#3311, 'C_64656661756c745f616972706f727473.elev AS C_4#3312, 'C_64656661756c745f616972706f727473.continent AS C_1#3313, 'C_64656661756c745f616972706f727473.country AS C_6#3314, 'C_64656661756c745f616972706f727473.region AS C_7#3315, 'C_64656661756c745f616972706f727473.city AS C_8#3316, 'C_64656661756c745f616972706f727473.iata AS C_10#3317, 'C_64656661756c745f616972706f727473.code AS C_9#3318, 'C_64656661756c745f616972706f727473.gps AS C_11#3319, ('round(('C_64656661756c745f616972706f727473.lat * 'power(10.0, 3)), 0) / 'power(10.0, 3)) AS C_4331#3320, ('round(('C_64656661756c745f616972706f727473.lon * 'power(10.0, 3)), 0) / 'power(10.0, 3)) AS C_4332#3321, ('round(('C_64656661756c745f616972706f727473.elev * 'power(10.0, 3)), 0) / 'power(10.0, 3)) AS C_4333#3322]
+- 'Filter ((('C_64656661756c745f616972706f727473.lon <= -104.05) AND ('C_64656661756c745f616972706f727473.lon >= -111.05)) AND (('C_64656661756c745f616972706f727473.lat >= 41.0) AND ('C_64656661756c745f616972706f727473.lat <= 45.0)))
+- 'SubqueryAlias C_64656661756c745f616972706f727473
+- 'UnresolvedRelation [default, airports], [], false
== Analyzed Logical Plan ==
C_13: string, C_14: string, C_15: string, C_16: double, C_12: double, C_17: double, C_18: string, C_21: string, C_19: string, C_20: string, C_23: string, C_24: string, C_25: string, C_22: double
GlobalLimit 5
+- LocalLimit 5
+- Sort [C_22#3336 DESC NULLS LAST], true
+- Project [C_0#3307 AS C_13#3323, C_43#3308 AS C_14#3324, C_5#3309 AS C_15#3325, C_4331#3320 AS C_16#3326, C_4332#3321 AS C_12#3327, C_4333#3322 AS C_17#3328, C_1#3313 AS C_18#3329, C_6#3314 AS C_21#3330, C_7#3315 AS C_19#3331, C_8#3316 AS C_20#3332, C_10#3317 AS C_23#3333, C_9#3318 AS C_24#3334, C_11#3319 AS C_25#3335, C_4#3312 AS C_22#3336]
+- SubqueryAlias C_4954424c
+- Project [id#3337 AS C_0#3307, type#3338 AS C_43#3308, name#3339 AS C_5#3309, lat#3340 AS C_3#3310, lon#3341 AS C_2#3311, elev#3342 AS C_4#3312, continent#3343 AS C_1#3313, country#3344 AS C_6#3314, region#3345 AS C_7#3315, city#3346 AS C_8#3316, iata#3347 AS C_10#3317, code#3348 AS C_9#3318, gps#3349 AS C_11#3319, (round((lat#3340 * POWER(10.0, cast(3 as double))), 0) / POWER(10.0, cast(3 as double))) AS C_4331#3320, (round((lon#3341 * POWER(10.0, cast(3 as double))), 0) / POWER(10.0, cast(3 as double))) AS C_4332#3321, (round((elev#3342 * POWER(10.0, cast(3 as double))), 0) / POWER(10.0, cast(3 as double))) AS C_4333#3322]
+- Filter (((lon#3341 <= -104.05) AND (lon#3341 >= -111.05)) AND ((lat#3340 >= 41.0) AND (lat#3340 <= 45.0)))
+- SubqueryAlias C_64656661756c745f616972706f727473
+- SubqueryAlias spark_catalog.default.airports
+- Relation spark_catalog.default.airports[id#3337,type#3338,name#3339,lat#3340,lon#3341,elev#3342,continent#3343,country#3344,region#3345,city#3346,iata#3347,code#3348,gps#3349] parquet
== Optimized Logical Plan ==
GlobalLimit 5
+- LocalLimit 5
+- Sort [C_22#3336 DESC NULLS LAST], true
+- Project [id#3337 AS C_13#3323, type#3338 AS C_14#3324, name#3339 AS C_15#3325, (round((lat#3340 * 1000.0), 0) / 1000.0) AS C_16#3326, (round((lon#3341 * 1000.0), 0) / 1000.0) AS C_12#3327, (round((elev#3342 * 1000.0), 0) / 1000.0) AS C_17#3328, continent#3343 AS C_18#3329, country#3344 AS C_21#3330, region#3345 AS C_19#3331, city#3346 AS C_20#3332, iata#3347 AS C_23#3333, code#3348 AS C_24#3334, gps#3349 AS C_25#3335, elev#3342 AS C_22#3336]
+- Filter ((isnotnull(lon#3341) AND isnotnull(lat#3340)) AND (((lon#3341 <= -104.05) AND (lon#3341 >= -111.05)) AND ((lat#3340 >= 41.0) AND (lat#3340 <= 45.0))))
+- Relation spark_catalog.default.airports[id#3337,type#3338,name#3339,lat#3340,lon#3341,elev#3342,continent#3343,country#3344,region#3345,city#3346,iata#3347,code#3348,gps#3349] parquet
== Physical Plan ==
TakeOrderedAndProject(limit=5, orderBy=[C_22#3336 DESC NULLS LAST], output=[C_13#3323,C_14#3324,C_15#3325,C_16#3326,C_12#3327,C_17#3328,C_18#3329,C_21#3330,C_19#3331,C_20#3332,C_23#3333,C_24#3334,C_25#3335,C_22#3336])
+- *(1) Project [id#3337 AS C_13#3323, type#3338 AS C_14#3324, name#3339 AS C_15#3325, (round((lat#3340 * 1000.0), 0) / 1000.0) AS C_16#3326, (round((lon#3341 * 1000.0), 0) / 1000.0) AS C_12#3327, (round((elev#3342 * 1000.0), 0) / 1000.0) AS C_17#3328, continent#3343 AS C_18#3329, country#3344 AS C_21#3330, region#3345 AS C_19#3331, city#3346 AS C_20#3332, iata#3347 AS C_23#3333, code#3348 AS C_24#3334, gps#3349 AS C_25#3335, elev#3342 AS C_22#3336]
+- *(1) Filter (((((isnotnull(lon#3341) AND isnotnull(lat#3340)) AND (lon#3341 <= -104.05)) AND (lon#3341 >= -111.05)) AND (lat#3340 >= 41.0)) AND (lat#3340 <= 45.0))
+- *(1) ColumnarToRow
+- FileScan parquet spark_catalog.default.airports[id#3337,type#3338,name#3339,lat#3340,lon#3341,elev#3342,continent#3343,country#3344,region#3345,city#3346,iata#3347,code#3348,gps#3349] Batched: true, DataFilters: [isnotnull(lon#3341), isnotnull(lat#3340), (lon#3341 <= -104.05), (lon#3341 >= -111.05), (lat#334..., Format: Parquet, Location: InMemoryFileIndex(1 paths)[file:/home/acdcadmin/spark-warehouse/airports], PartitionFilters: [], PushedFilters: [IsNotNull(lon), IsNotNull(lat), LessThanOrEqual(lon,-104.05), GreaterThanOrEqual(lon,-111.05), G..., ReadSchema: struct<id:string,type:string,name:string,lat:double,lon:double,elev:double,continent:string,count...
|
jonathan
|
|
d05b3f61-2402-4b48-b9c2-c45932a10b4f
|
2025/06/13 23:21:09
|
2025/06/13 23:21:09
|
2025/06/13 23:21:10
|
13 ms
|
934 ms
|
Listing catalogs
|
CLOSED
|
|
jonathan
|
|
500a6e02-2c16-4a5f-aa79-c12bf659d6f8
|
2025/06/13 23:21:10
|
2025/06/13 23:21:10
|
2025/06/13 23:21:10
|
38 ms
|
387 ms
|
Listing databases 'catalog : , schemaPattern : null'
|
CLOSED
|
|
jonathan
|
|
fea01ec8-cffd-4fd3-8768-91a727bf47fe
|
2025/06/13 23:21:10
|
2025/06/13 23:21:11
|
2025/06/13 23:21:11
|
53 ms
|
397 ms
|
SHOW TABLES IN `c3ba675f1fb64660ba4a90155b35924e`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'ShowTables [namespace#3380, tableName#3381, isTemporary#3382]
+- 'UnresolvedNamespace [c3ba675f1fb64660ba4a90155b35924e]
== Analyzed Logical Plan ==
namespace: string, tableName: string, isTemporary: boolean
ShowTables [namespace#3380, tableName#3381, isTemporary#3382]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [c3ba675f1fb64660ba4a90155b35924e]
== Optimized Logical Plan ==
CommandResult [namespace#3380, tableName#3381, isTemporary#3382], ShowTables [namespace#3380, tableName#3381, isTemporary#3382], V2SessionCatalog(spark_catalog), [c3ba675f1fb64660ba4a90155b35924e], [[0,2000000020,400000000c,0,6635373661623363,3036363436626631,3531303961346162,6534323935336235,69746e656469796d,72656966]]
+- ShowTables [namespace#3380, tableName#3381, isTemporary#3382]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [c3ba675f1fb64660ba4a90155b35924e]
== Physical Plan ==
CommandResult [namespace#3380, tableName#3381, isTemporary#3382]
+- ShowTables [namespace#3380, tableName#3381, isTemporary#3382], V2SessionCatalog(spark_catalog), [c3ba675f1fb64660ba4a90155b35924e]
|
jonathan
|
|
23d0bb45-2016-4751-8b44-535843d1a17f
|
2025/06/13 23:21:11
|
2025/06/13 23:21:11
|
2025/06/13 23:21:11
|
49 ms
|
317 ms
|
SHOW TABLES IN `default`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'ShowTables [namespace#3400, tableName#3401, isTemporary#3402]
+- 'UnresolvedNamespace [default]
== Analyzed Logical Plan ==
namespace: string, tableName: string, isTemporary: boolean
ShowTables [namespace#3400, tableName#3401, isTemporary#3402]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [default]
== Optimized Logical Plan ==
CommandResult [namespace#3400, tableName#3401, isTemporary#3402], ShowTables [namespace#3400, tableName#3401, isTemporary#3402], V2SessionCatalog(spark_catalog), [default], [[0,2000000007,2800000008,0,746c7561666564,7374726f70726961], [0,2000000007,2800000008,0,746c7561666564,73657079746c6c61], [0,2000000007,2800000009,0,746c7561666564,73657079746c6c61,32], [0,2000000007,280000000d,0,746c7561666564,73657079746c6c61,6369736162], [0,2000000007,280000000e,0,746c7561666564,73657079746c6c61,326369736162], [0,2000000007,2800000009,0,746c7561666564,7079747961727261,65], [0,2000000007,280000000a,0,746c7561666564,7974746e69676962,6570], [0,2000000007,280000000a,0,746c7561666564,79747972616e6962,6570], [0,2000000007,2800000008,0,746c7561666564,6570797465746164], [0,2000000007,280000000b,0,746c7561666564,746c616d69636564,657079], [0,2000000007,2800000009,0,746c7561666564,70797474616f6c66,65], [0,2000000007,2800000008,0,746c7561666564,736570797470616d], [0,2000000007,280000000b,0,746c7561666564,646978617463796e,617461], [0,2000000007,280000000f,0,746c7561666564,746978617463796e,61746164706972], [0,2000000007,2800000010,0,746c7561666564,7365745f656d6f73,32656c6261745f74], [0,2000000007,280000000a,0,746c7561666564,7974746375727473,6570], [0,2000000007,280000000e,0,746c7561666564,656e6f7a69786174,70756b6f6f6c], [0,2000000007,280000000c,0,746c7561666564,74676e696b726f77,73657079], [0,2000000007,2800000016,0,746c7561666564,74676e696b726f77,6874697773657079,7265626d756e]]
+- ShowTables [namespace#3400, tableName#3401, isTemporary#3402]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [default]
== Physical Plan ==
CommandResult [namespace#3400, tableName#3401, isTemporary#3402]
+- ShowTables [namespace#3400, tableName#3401, isTemporary#3402], V2SessionCatalog(spark_catalog), [default]
|
jonathan
|
|
ebbdceac-2358-42f5-91b4-13bf7f038e68
|
2025/06/13 23:21:11
|
2025/06/13 23:21:11
|
2025/06/13 23:21:12
|
28 ms
|
336 ms
|
SHOW TABLES IN `onetableschema`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'ShowTables [namespace#3420, tableName#3421, isTemporary#3422]
+- 'UnresolvedNamespace [onetableschema]
== Analyzed Logical Plan ==
namespace: string, tableName: string, isTemporary: boolean
ShowTables [namespace#3420, tableName#3421, isTemporary#3422]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [onetableschema]
== Optimized Logical Plan ==
CommandResult [namespace#3420, tableName#3421, isTemporary#3422], ShowTables [namespace#3420, tableName#3421, isTemporary#3422], V2SessionCatalog(spark_catalog), [onetableschema], [[0,200000000e,300000000c,0,656c626174656e6f,616d65686373,73657079746c6c61,74736574]]
+- ShowTables [namespace#3420, tableName#3421, isTemporary#3422]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [onetableschema]
== Physical Plan ==
CommandResult [namespace#3420, tableName#3421, isTemporary#3422]
+- ShowTables [namespace#3420, tableName#3421, isTemporary#3422], V2SessionCatalog(spark_catalog), [onetableschema]
|
jonathan
|
|
82681c0c-59dc-4ddb-a8bf-459d962d6b81
|
2025/06/13 23:21:12
|
2025/06/13 23:21:12
|
2025/06/13 23:21:12
|
20 ms
|
327 ms
|
SHOW TABLES IN `test`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'ShowTables [namespace#3440, tableName#3441, isTemporary#3442]
+- 'UnresolvedNamespace [test]
== Analyzed Logical Plan ==
namespace: string, tableName: string, isTemporary: boolean
ShowTables [namespace#3440, tableName#3441, isTemporary#3442]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [test]
== Optimized Logical Plan ==
CommandResult [namespace#3440, tableName#3441, isTemporary#3442], ShowTables [namespace#3440, tableName#3441, isTemporary#3442], V2SessionCatalog(spark_catalog), [test]
+- ShowTables [namespace#3440, tableName#3441, isTemporary#3442]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [test]
== Physical Plan ==
CommandResult <empty>, [namespace#3440, tableName#3441, isTemporary#3442]
+- ShowTables [namespace#3440, tableName#3441, isTemporary#3442], V2SessionCatalog(spark_catalog), [test]
|
jonathan
|
|
a25e8327-fe20-4539-9cbe-e24a2d8c1f1b
|
2025/06/13 23:21:12
|
2025/06/13 23:21:12
|
2025/06/13 23:21:13
|
11 ms
|
319 ms
|
SHOW TABLES IN `global_temp`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'ShowTables [namespace#3450, tableName#3451, isTemporary#3452]
+- 'UnresolvedNamespace [global_temp]
== Analyzed Logical Plan ==
namespace: string, tableName: string, isTemporary: boolean
ShowTables [namespace#3450, tableName#3451, isTemporary#3452]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [global_temp]
== Optimized Logical Plan ==
CommandResult [namespace#3450, tableName#3451, isTemporary#3452], ShowTables [namespace#3450, tableName#3451, isTemporary#3452], V2SessionCatalog(spark_catalog), [global_temp]
+- ShowTables [namespace#3450, tableName#3451, isTemporary#3452]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [global_temp]
== Physical Plan ==
CommandResult <empty>, [namespace#3450, tableName#3451, isTemporary#3452]
+- ShowTables [namespace#3450, tableName#3451, isTemporary#3452], V2SessionCatalog(spark_catalog), [global_temp]
|
jonathan
|
|
a052b843-5569-402b-89ab-e5d7cdbba6db
|
2025/06/13 23:21:32
|
2025/06/13 23:21:32
|
2025/06/13 23:21:32
|
94 ms
|
657 ms
|
DESCRIBE TABLE `default`.`alltypes`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'DescribeRelation false, [col_name#3460, data_type#3461, comment#3462]
+- 'UnresolvedTableOrView [default, alltypes], DESCRIBE TABLE, true
== Analyzed Logical Plan ==
col_name: string, data_type: string, comment: string
DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3460, data_type#3461, comment#3462]
== Optimized Logical Plan ==
CommandResult [col_name#3460, data_type#3461, comment#3462], Execute DescribeTableCommand, [[STRING,string,null], [DOUBLE,double,null], [INTEGER,int,null], [BIGINT,bigint,null], [FLOAT,float,null], [DECIMAL,decimal(10,2),null], [NUMBER,decimal(10,2),null], [BOOLEAN,boolean,null], [DATE,date,null], [TIMESTAMP,timestamp,null], [DATETIME,timestamp,null], [BINARY,binary,null], [ARRAY,array<int>,null], [MAP,map<string,string>,null], [STRUCT,struct<field1:string,field2:int>,null], [VARCHAR,string,null], [CHAR,string,null]]
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3460, data_type#3461, comment#3462]
== Physical Plan ==
CommandResult [col_name#3460, data_type#3461, comment#3462]
+- Execute DescribeTableCommand
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3460, data_type#3461, comment#3462]
|
jonathan
|
|
51708b4c-da4e-4cdc-96e6-ebf36f4d8c54
|
2025/06/13 23:21:32
|
2025/06/13 23:21:33
|
2025/06/13 23:21:33
|
67 ms
|
346 ms
|
DESCRIBE TABLE `default`.`alltypes`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'DescribeRelation false, [col_name#3487, data_type#3488, comment#3489]
+- 'UnresolvedTableOrView [default, alltypes], DESCRIBE TABLE, true
== Analyzed Logical Plan ==
col_name: string, data_type: string, comment: string
DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3487, data_type#3488, comment#3489]
== Optimized Logical Plan ==
CommandResult [col_name#3487, data_type#3488, comment#3489], Execute DescribeTableCommand, [[STRING,string,null], [DOUBLE,double,null], [INTEGER,int,null], [BIGINT,bigint,null], [FLOAT,float,null], [DECIMAL,decimal(10,2),null], [NUMBER,decimal(10,2),null], [BOOLEAN,boolean,null], [DATE,date,null], [TIMESTAMP,timestamp,null], [DATETIME,timestamp,null], [BINARY,binary,null], [ARRAY,array<int>,null], [MAP,map<string,string>,null], [STRUCT,struct<field1:string,field2:int>,null], [VARCHAR,string,null], [CHAR,string,null]]
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3487, data_type#3488, comment#3489]
== Physical Plan ==
CommandResult [col_name#3487, data_type#3488, comment#3489]
+- Execute DescribeTableCommand
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3487, data_type#3488, comment#3489]
|
jonathan
|
[39]
|
8999cf5e-c88b-4980-aa38-13e2c37d95c1
|
2025/06/13 23:21:33
|
2025/06/13 23:21:33
|
2025/06/13 23:21:33
|
130 ms
|
539 ms
|
select `STRING`,
`DOUBLE`,
`INTEGER`,
`BIGINT`,
`FLOAT`,
`DECIMAL`,
`NUMBER`,
`BOOLEAN`,
`DATE`,
`TIMESTAMP`,
`DATETIME`,
`BINARY`,
`ARRAY`,
`MAP`,
`STRUCT`,
`VARCHAR`,
`CHAR`
from `default`.`alltypes`
limit 1000
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'GlobalLimit 1000
+- 'LocalLimit 1000
+- 'Project ['STRING, 'DOUBLE, 'INTEGER, 'BIGINT, 'FLOAT, 'DECIMAL, 'NUMBER, 'BOOLEAN, 'DATE, 'TIMESTAMP, 'DATETIME, 'BINARY, 'ARRAY, 'MAP, 'STRUCT, 'VARCHAR, 'CHAR]
+- 'UnresolvedRelation [default, alltypes], [], false
== Analyzed Logical Plan ==
STRING: string, DOUBLE: double, INTEGER: int, BIGINT: bigint, FLOAT: float, DECIMAL: decimal(10,2), NUMBER: decimal(10,2), BOOLEAN: boolean, DATE: date, TIMESTAMP: timestamp, DATETIME: timestamp, BINARY: binary, ARRAY: array<int>, MAP: map<string,string>, STRUCT: struct<field1:string,field2:int>, VARCHAR: string, CHAR: string
GlobalLimit 1000
+- LocalLimit 1000
+- Project [STRING#3514, DOUBLE#3515, INTEGER#3516, BIGINT#3517L, FLOAT#3518, DECIMAL#3519, NUMBER#3520, BOOLEAN#3521, DATE#3522, TIMESTAMP#3523, DATETIME#3524, BINARY#3525, ARRAY#3526, MAP#3527, STRUCT#3528, VARCHAR#3529, CHAR#3530]
+- SubqueryAlias spark_catalog.default.alltypes
+- HiveTableRelation [`spark_catalog`.`default`.`alltypes`, org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe, Data Cols: [STRING#3514, DOUBLE#3515, INTEGER#3516, BIGINT#3517L, FLOAT#3518, DECIMAL#3519, NUMBER#3520, BOO..., Partition Cols: []]
== Optimized Logical Plan ==
GlobalLimit 1000
+- LocalLimit 1000
+- HiveTableRelation [`spark_catalog`.`default`.`alltypes`, org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe, Data Cols: [STRING#3514, DOUBLE#3515, INTEGER#3516, BIGINT#3517L, FLOAT#3518, DECIMAL#3519, NUMBER#3520, BOO..., Partition Cols: []]
== Physical Plan ==
CollectLimit 1000
+- Scan hive spark_catalog.default.alltypes [STRING#3514, DOUBLE#3515, INTEGER#3516, BIGINT#3517L, FLOAT#3518, DECIMAL#3519, NUMBER#3520, BOOLEAN#3521, DATE#3522, TIMESTAMP#3523, DATETIME#3524, BINARY#3525, ARRAY#3526, MAP#3527, STRUCT#3528, VARCHAR#3529, CHAR#3530], HiveTableRelation [`spark_catalog`.`default`.`alltypes`, org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe, Data Cols: [STRING#3514, DOUBLE#3515, INTEGER#3516, BIGINT#3517L, FLOAT#3518, DECIMAL#3519, NUMBER#3520, BOO..., Partition Cols: []]
|
jonathan
|
|
d38113ab-3c71-48c7-9161-558f6b0b85a3
|
2025/06/13 23:23:32
|
2025/06/13 23:23:32
|
2025/06/13 23:23:32
|
86 ms
|
352 ms
|
DESCRIBE TABLE `default`.`alltypes`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'DescribeRelation false, [col_name#3566, data_type#3567, comment#3568]
+- 'UnresolvedTableOrView [default, alltypes], DESCRIBE TABLE, true
== Analyzed Logical Plan ==
col_name: string, data_type: string, comment: string
DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3566, data_type#3567, comment#3568]
== Optimized Logical Plan ==
CommandResult [col_name#3566, data_type#3567, comment#3568], Execute DescribeTableCommand, [[STRING,string,null], [DOUBLE,double,null], [INTEGER,int,null], [BIGINT,bigint,null], [FLOAT,float,null], [DECIMAL,decimal(10,2),null], [NUMBER,decimal(10,2),null], [BOOLEAN,boolean,null], [DATE,date,null], [TIMESTAMP,timestamp,null], [DATETIME,timestamp,null], [BINARY,binary,null], [ARRAY,array<int>,null], [MAP,map<string,string>,null], [STRUCT,struct<field1:string,field2:int>,null], [VARCHAR,string,null], [CHAR,string,null]]
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3566, data_type#3567, comment#3568]
== Physical Plan ==
CommandResult [col_name#3566, data_type#3567, comment#3568]
+- Execute DescribeTableCommand
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3566, data_type#3567, comment#3568]
|
jonathan
|
|
b9dd0169-a02e-4def-a8dd-397345129b11
|
2025/06/13 23:23:32
|
2025/06/13 23:23:32
|
2025/06/13 23:23:32
|
60 ms
|
327 ms
|
DESCRIBE TABLE `default`.`alltypes`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'DescribeRelation false, [col_name#3593, data_type#3594, comment#3595]
+- 'UnresolvedTableOrView [default, alltypes], DESCRIBE TABLE, true
== Analyzed Logical Plan ==
col_name: string, data_type: string, comment: string
DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3593, data_type#3594, comment#3595]
== Optimized Logical Plan ==
CommandResult [col_name#3593, data_type#3594, comment#3595], Execute DescribeTableCommand, [[STRING,string,null], [DOUBLE,double,null], [INTEGER,int,null], [BIGINT,bigint,null], [FLOAT,float,null], [DECIMAL,decimal(10,2),null], [NUMBER,decimal(10,2),null], [BOOLEAN,boolean,null], [DATE,date,null], [TIMESTAMP,timestamp,null], [DATETIME,timestamp,null], [BINARY,binary,null], [ARRAY,array<int>,null], [MAP,map<string,string>,null], [STRUCT,struct<field1:string,field2:int>,null], [VARCHAR,string,null], [CHAR,string,null]]
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3593, data_type#3594, comment#3595]
== Physical Plan ==
CommandResult [col_name#3593, data_type#3594, comment#3595]
+- Execute DescribeTableCommand
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3593, data_type#3594, comment#3595]
|
jonathan
|
|
44f1afa7-c4b6-4189-bee1-d284065506de
|
2025/06/13 23:24:48
|
2025/06/13 23:24:48
|
2025/06/13 23:24:48
|
84 ms
|
366 ms
|
DESCRIBE TABLE `default`.`alltypes`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'DescribeRelation false, [col_name#3620, data_type#3621, comment#3622]
+- 'UnresolvedTableOrView [default, alltypes], DESCRIBE TABLE, true
== Analyzed Logical Plan ==
col_name: string, data_type: string, comment: string
DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3620, data_type#3621, comment#3622]
== Optimized Logical Plan ==
CommandResult [col_name#3620, data_type#3621, comment#3622], Execute DescribeTableCommand, [[STRING,string,null], [DOUBLE,double,null], [INTEGER,int,null], [BIGINT,bigint,null], [FLOAT,float,null], [DECIMAL,decimal(10,2),null], [NUMBER,decimal(10,2),null], [BOOLEAN,boolean,null], [DATE,date,null], [TIMESTAMP,timestamp,null], [DATETIME,timestamp,null], [BINARY,binary,null], [ARRAY,array<int>,null], [MAP,map<string,string>,null], [STRUCT,struct<field1:string,field2:int>,null], [VARCHAR,string,null], [CHAR,string,null]]
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3620, data_type#3621, comment#3622]
== Physical Plan ==
CommandResult [col_name#3620, data_type#3621, comment#3622]
+- Execute DescribeTableCommand
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3620, data_type#3621, comment#3622]
|
jonathan
|
|
de84919a-5ae5-4156-acc5-4af4137969e9
|
2025/06/13 23:24:48
|
2025/06/13 23:24:48
|
2025/06/13 23:24:48
|
54 ms
|
343 ms
|
DESCRIBE TABLE `default`.`alltypes`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'DescribeRelation false, [col_name#3647, data_type#3648, comment#3649]
+- 'UnresolvedTableOrView [default, alltypes], DESCRIBE TABLE, true
== Analyzed Logical Plan ==
col_name: string, data_type: string, comment: string
DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3647, data_type#3648, comment#3649]
== Optimized Logical Plan ==
CommandResult [col_name#3647, data_type#3648, comment#3649], Execute DescribeTableCommand, [[STRING,string,null], [DOUBLE,double,null], [INTEGER,int,null], [BIGINT,bigint,null], [FLOAT,float,null], [DECIMAL,decimal(10,2),null], [NUMBER,decimal(10,2),null], [BOOLEAN,boolean,null], [DATE,date,null], [TIMESTAMP,timestamp,null], [DATETIME,timestamp,null], [BINARY,binary,null], [ARRAY,array<int>,null], [MAP,map<string,string>,null], [STRUCT,struct<field1:string,field2:int>,null], [VARCHAR,string,null], [CHAR,string,null]]
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3647, data_type#3648, comment#3649]
== Physical Plan ==
CommandResult [col_name#3647, data_type#3648, comment#3649]
+- Execute DescribeTableCommand
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3647, data_type#3648, comment#3649]
|
jonathan
|
|
9589ebd7-ed14-4a9d-a173-a591f1db0105
|
2025/06/13 23:27:00
|
2025/06/13 23:27:00
|
2025/06/13 23:27:00
|
62 ms
|
333 ms
|
DESCRIBE TABLE `default`.`alltypes`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'DescribeRelation false, [col_name#3674, data_type#3675, comment#3676]
+- 'UnresolvedTableOrView [default, alltypes], DESCRIBE TABLE, true
== Analyzed Logical Plan ==
col_name: string, data_type: string, comment: string
DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3674, data_type#3675, comment#3676]
== Optimized Logical Plan ==
CommandResult [col_name#3674, data_type#3675, comment#3676], Execute DescribeTableCommand, [[STRING,string,null], [DOUBLE,double,null], [INTEGER,int,null], [BIGINT,bigint,null], [FLOAT,float,null], [DECIMAL,decimal(10,2),null], [NUMBER,decimal(10,2),null], [BOOLEAN,boolean,null], [DATE,date,null], [TIMESTAMP,timestamp,null], [DATETIME,timestamp,null], [BINARY,binary,null], [ARRAY,array<int>,null], [MAP,map<string,string>,null], [STRUCT,struct<field1:string,field2:int>,null], [VARCHAR,string,null], [CHAR,string,null]]
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3674, data_type#3675, comment#3676]
== Physical Plan ==
CommandResult [col_name#3674, data_type#3675, comment#3676]
+- Execute DescribeTableCommand
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3674, data_type#3675, comment#3676]
|
jonathan
|
|
2fe876c5-3a65-4db2-bf8a-7b713edf57cc
|
2025/06/13 23:27:00
|
2025/06/13 23:27:00
|
2025/06/13 23:27:00
|
55 ms
|
322 ms
|
DESCRIBE TABLE `default`.`alltypes`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'DescribeRelation false, [col_name#3701, data_type#3702, comment#3703]
+- 'UnresolvedTableOrView [default, alltypes], DESCRIBE TABLE, true
== Analyzed Logical Plan ==
col_name: string, data_type: string, comment: string
DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3701, data_type#3702, comment#3703]
== Optimized Logical Plan ==
CommandResult [col_name#3701, data_type#3702, comment#3703], Execute DescribeTableCommand, [[STRING,string,null], [DOUBLE,double,null], [INTEGER,int,null], [BIGINT,bigint,null], [FLOAT,float,null], [DECIMAL,decimal(10,2),null], [NUMBER,decimal(10,2),null], [BOOLEAN,boolean,null], [DATE,date,null], [TIMESTAMP,timestamp,null], [DATETIME,timestamp,null], [BINARY,binary,null], [ARRAY,array<int>,null], [MAP,map<string,string>,null], [STRUCT,struct<field1:string,field2:int>,null], [VARCHAR,string,null], [CHAR,string,null]]
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3701, data_type#3702, comment#3703]
== Physical Plan ==
CommandResult [col_name#3701, data_type#3702, comment#3703]
+- Execute DescribeTableCommand
+- DescribeTableCommand `spark_catalog`.`default`.`alltypes`, false, [col_name#3701, data_type#3702, comment#3703]
|
jonathan
|
|
844a111b-04dd-49a5-ba46-598dd022910a
|
2025/06/13 23:27:01
|
2025/06/13 23:27:01
|
2025/06/13 23:27:02
|
15 ms
|
713 ms
|
Listing catalogs
|
CLOSED
|
|
jonathan
|
|
14fe4125-ce7b-47ec-8eae-1f27d268514f
|
2025/06/13 23:27:01
|
2025/06/13 23:27:01
|
2025/06/13 23:27:02
|
28 ms
|
364 ms
|
Listing databases 'catalog : , schemaPattern : null'
|
CLOSED
|
|
jonathan
|
|
69bf0b73-65ae-4ec0-b457-1ad9a9ab7c3f
|
2025/06/13 23:27:02
|
2025/06/13 23:27:02
|
2025/06/13 23:27:02
|
30 ms
|
363 ms
|
SHOW TABLES IN `c3ba675f1fb64660ba4a90155b35924e`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'ShowTables [namespace#3728, tableName#3729, isTemporary#3730]
+- 'UnresolvedNamespace [c3ba675f1fb64660ba4a90155b35924e]
== Analyzed Logical Plan ==
namespace: string, tableName: string, isTemporary: boolean
ShowTables [namespace#3728, tableName#3729, isTemporary#3730]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [c3ba675f1fb64660ba4a90155b35924e]
== Optimized Logical Plan ==
CommandResult [namespace#3728, tableName#3729, isTemporary#3730], ShowTables [namespace#3728, tableName#3729, isTemporary#3730], V2SessionCatalog(spark_catalog), [c3ba675f1fb64660ba4a90155b35924e], [[0,2000000020,400000000c,0,6635373661623363,3036363436626631,3531303961346162,6534323935336235,69746e656469796d,72656966]]
+- ShowTables [namespace#3728, tableName#3729, isTemporary#3730]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [c3ba675f1fb64660ba4a90155b35924e]
== Physical Plan ==
CommandResult [namespace#3728, tableName#3729, isTemporary#3730]
+- ShowTables [namespace#3728, tableName#3729, isTemporary#3730], V2SessionCatalog(spark_catalog), [c3ba675f1fb64660ba4a90155b35924e]
|
jonathan
|
|
12459dfe-ccf0-4f29-ae6a-39888705b926
|
2025/06/13 23:27:02
|
2025/06/13 23:27:02
|
2025/06/13 23:27:02
|
25 ms
|
342 ms
|
SHOW TABLES IN `default`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'ShowTables [namespace#3748, tableName#3749, isTemporary#3750]
+- 'UnresolvedNamespace [default]
== Analyzed Logical Plan ==
namespace: string, tableName: string, isTemporary: boolean
ShowTables [namespace#3748, tableName#3749, isTemporary#3750]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [default]
== Optimized Logical Plan ==
CommandResult [namespace#3748, tableName#3749, isTemporary#3750], ShowTables [namespace#3748, tableName#3749, isTemporary#3750], V2SessionCatalog(spark_catalog), [default], [[0,2000000007,2800000008,0,746c7561666564,7374726f70726961], [0,2000000007,2800000008,0,746c7561666564,73657079746c6c61], [0,2000000007,2800000009,0,746c7561666564,73657079746c6c61,32], [0,2000000007,280000000d,0,746c7561666564,73657079746c6c61,6369736162], [0,2000000007,280000000e,0,746c7561666564,73657079746c6c61,326369736162], [0,2000000007,2800000009,0,746c7561666564,7079747961727261,65], [0,2000000007,280000000a,0,746c7561666564,7974746e69676962,6570], [0,2000000007,280000000a,0,746c7561666564,79747972616e6962,6570], [0,2000000007,2800000008,0,746c7561666564,6570797465746164], [0,2000000007,280000000b,0,746c7561666564,746c616d69636564,657079], [0,2000000007,2800000009,0,746c7561666564,70797474616f6c66,65], [0,2000000007,2800000008,0,746c7561666564,736570797470616d], [0,2000000007,280000000b,0,746c7561666564,646978617463796e,617461], [0,2000000007,280000000f,0,746c7561666564,746978617463796e,61746164706972], [0,2000000007,2800000010,0,746c7561666564,7365745f656d6f73,32656c6261745f74], [0,2000000007,280000000a,0,746c7561666564,7974746375727473,6570], [0,2000000007,280000000e,0,746c7561666564,656e6f7a69786174,70756b6f6f6c], [0,2000000007,280000000c,0,746c7561666564,74676e696b726f77,73657079], [0,2000000007,2800000016,0,746c7561666564,74676e696b726f77,6874697773657079,7265626d756e]]
+- ShowTables [namespace#3748, tableName#3749, isTemporary#3750]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [default]
== Physical Plan ==
CommandResult [namespace#3748, tableName#3749, isTemporary#3750]
+- ShowTables [namespace#3748, tableName#3749, isTemporary#3750], V2SessionCatalog(spark_catalog), [default]
|
jonathan
|
|
d3607e54-df5f-406c-b493-bbdc49b92c86
|
2025/06/13 23:27:03
|
2025/06/13 23:27:03
|
2025/06/13 23:27:03
|
26 ms
|
337 ms
|
SHOW TABLES IN `onetableschema`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'ShowTables [namespace#3768, tableName#3769, isTemporary#3770]
+- 'UnresolvedNamespace [onetableschema]
== Analyzed Logical Plan ==
namespace: string, tableName: string, isTemporary: boolean
ShowTables [namespace#3768, tableName#3769, isTemporary#3770]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [onetableschema]
== Optimized Logical Plan ==
CommandResult [namespace#3768, tableName#3769, isTemporary#3770], ShowTables [namespace#3768, tableName#3769, isTemporary#3770], V2SessionCatalog(spark_catalog), [onetableschema], [[0,200000000e,300000000c,0,656c626174656e6f,616d65686373,73657079746c6c61,74736574]]
+- ShowTables [namespace#3768, tableName#3769, isTemporary#3770]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [onetableschema]
== Physical Plan ==
CommandResult [namespace#3768, tableName#3769, isTemporary#3770]
+- ShowTables [namespace#3768, tableName#3769, isTemporary#3770], V2SessionCatalog(spark_catalog), [onetableschema]
|
jonathan
|
|
b35330e2-2881-406e-9686-7716a3933bd4
|
2025/06/13 23:27:03
|
2025/06/13 23:27:03
|
2025/06/13 23:27:03
|
39 ms
|
320 ms
|
SHOW TABLES IN `test`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'ShowTables [namespace#3788, tableName#3789, isTemporary#3790]
+- 'UnresolvedNamespace [test]
== Analyzed Logical Plan ==
namespace: string, tableName: string, isTemporary: boolean
ShowTables [namespace#3788, tableName#3789, isTemporary#3790]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [test]
== Optimized Logical Plan ==
CommandResult [namespace#3788, tableName#3789, isTemporary#3790], ShowTables [namespace#3788, tableName#3789, isTemporary#3790], V2SessionCatalog(spark_catalog), [test]
+- ShowTables [namespace#3788, tableName#3789, isTemporary#3790]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [test]
== Physical Plan ==
CommandResult <empty>, [namespace#3788, tableName#3789, isTemporary#3790]
+- ShowTables [namespace#3788, tableName#3789, isTemporary#3790], V2SessionCatalog(spark_catalog), [test]
|
jonathan
|
|
420aad98-a026-4b03-91ed-a2e3e50b509a
|
2025/06/13 23:27:03
|
2025/06/13 23:27:03
|
2025/06/13 23:27:04
|
11 ms
|
346 ms
|
SHOW TABLES IN `global_temp`
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
'ShowTables [namespace#3798, tableName#3799, isTemporary#3800]
+- 'UnresolvedNamespace [global_temp]
== Analyzed Logical Plan ==
namespace: string, tableName: string, isTemporary: boolean
ShowTables [namespace#3798, tableName#3799, isTemporary#3800]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [global_temp]
== Optimized Logical Plan ==
CommandResult [namespace#3798, tableName#3799, isTemporary#3800], ShowTables [namespace#3798, tableName#3799, isTemporary#3800], V2SessionCatalog(spark_catalog), [global_temp]
+- ShowTables [namespace#3798, tableName#3799, isTemporary#3800]
+- ResolvedNamespace V2SessionCatalog(spark_catalog), [global_temp]
== Physical Plan ==
CommandResult <empty>, [namespace#3798, tableName#3799, isTemporary#3800]
+- ShowTables [namespace#3798, tableName#3799, isTemporary#3800], V2SessionCatalog(spark_catalog), [global_temp]
|
jonathon
|
|
d5105876-2692-43cf-a8ec-b8e810803663
|
2025/06/13 23:29:58
|
2025/06/13 23:29:58
|
2025/06/13 23:29:58
|
42 ms
|
353 ms
|
set -v
|
CLOSED
|
== Parsed Logical Plan ==
+details
== Parsed Logical Plan ==
SetCommand (-v,None)
== Analyzed Logical Plan ==
key: string, value: string, meaning: string, Since version: string
SetCommand (-v,None)
== Optimized Logical Plan ==
CommandResult [key#3808, value#3809, meaning#3810, Since version#3811], Execute SetCommand, [[spark.sql.adaptive.advisoryPartitionSizeInBytes,<value of spark.sql.adaptive.shuffle.targetPostShuffleInputSize>,The advisory size in bytes of the shuffle partition during adaptive optimization (when spark.sql.adaptive.enabled is true). It takes effect when Spark coalesces small shuffle partitions or splits skewed shuffle partition.,3.0.0], [spark.sql.adaptive.autoBroadcastJoinThreshold,<undefined>,Configures the maximum size in bytes for a table that will be broadcast to all worker nodes when performing a join. By setting this value to -1 broadcasting can be disabled. The default value is same with spark.sql.autoBroadcastJoinThreshold. Note that, this config is used only in adaptive framework.,3.2.0], [spark.sql.adaptive.coalescePartitions.enabled,true,When true and 'spark.sql.adaptive.enabled' is true, Spark will coalesce contiguous shuffle partitions according to the target size (specified by 'spark.sql.adaptive.advisoryPartitionSizeInBytes'), to avoid too many small tasks.,3.0.0], [spark.sql.adaptive.coalescePartitions.initialPartitionNum,<undefined>,The initial number of shuffle partitions before coalescing. If not set, it equals to spark.sql.shuffle.partitions. This configuration only has an effect when 'spark.sql.adaptive.enabled' and 'spark.sql.adaptive.coalescePartitions.enabled' are both true.,3.0.0], [spark.sql.adaptive.coalescePartitions.minPartitionSize,1MB,The minimum size of shuffle partitions after coalescing. This is useful when the adaptively calculated target size is too small during partition coalescing.,3.2.0], [spark.sql.adaptive.coalescePartitions.parallelismFirst,true,When true, Spark does not respect the target size specified by 'spark.sql.adaptive.advisoryPartitionSizeInBytes' (default 64MB) when coalescing contiguous shuffle partitions, but adaptively calculate the target size according to the default parallelism of the Spark cluster. The calculated size is usually smaller than the configured target size. This is to maximize the parallelism and avoid performance regression when enabling adaptive query execution. It's recommended to set this config to false and respect the configured target size.,3.2.0], [spark.sql.adaptive.customCostEvaluatorClass,<undefined>,The custom cost evaluator class to be used for adaptive execution. If not being set, Spark will use its own SimpleCostEvaluator by default.,3.2.0], [spark.sql.adaptive.enabled,true,When true, enable adaptive query execution, which re-optimizes the query plan in the middle of query execution, based on accurate runtime statistics.,1.6.0], [spark.sql.adaptive.forceOptimizeSkewedJoin,false,When true, force enable OptimizeSkewedJoin even if it introduces extra shuffle.,3.3.0], [spark.sql.adaptive.localShuffleReader.enabled,true,When true and 'spark.sql.adaptive.enabled' is true, Spark tries to use local shuffle reader to read the shuffle data when the shuffle partitioning is not needed, for example, after converting sort-merge join to broadcast-hash join.,3.0.0], [spark.sql.adaptive.maxShuffledHashJoinLocalMapThreshold,0b,Configures the maximum size in bytes per partition that can be allowed to build local hash map. If this value is not smaller than spark.sql.adaptive.advisoryPartitionSizeInBytes and all the partition size are not larger than this config, join selection prefer to use shuffled hash join instead of sort merge join regardless of the value of spark.sql.join.preferSortMergeJoin.,3.2.0], [spark.sql.adaptive.optimizeSkewsInRebalancePartitions.enabled,true,When true and 'spark.sql.adaptive.enabled' is true, Spark will optimize the skewed shuffle partitions in RebalancePartitions and split them to smaller ones according to the target size (specified by 'spark.sql.adaptive.advisoryPartitionSizeInBytes'), to avoid data skew.,3.2.0], [spark.sql.adaptive.optimizer.excludedRules,<undefined>,Configures a list of rules to be disabled in the adaptive optimizer, in which the rules are specified by their rule names and separated by comma. The optimizer will log the rules that have indeed been excluded.,3.1.0], [spark.sql.adaptive.rebalancePartitionsSmallPartitionFactor,0.2,A partition will be merged during splitting if its size is small than this factor multiply spark.sql.adaptive.advisoryPartitionSizeInBytes.,3.3.0], [spark.sql.adaptive.skewJoin.enabled,true,When true and 'spark.sql.adaptive.enabled' is true, Spark dynamically handles skew in shuffled join (sort-merge and shuffled hash) by splitting (and replicating if needed) skewed partitions.,3.0.0], [spark.sql.adaptive.skewJoin.skewedPartitionFactor,5.0,A partition is considered as skewed if its size is larger than this factor multiplying the median partition size and also larger than 'spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes',3.0.0], [spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes,256MB,A partition is considered as skewed if its size in bytes is larger than this threshold and also larger than 'spark.sql.adaptive.skewJoin.skewedPartitionFactor' multiplying the median partition size. Ideally this config should be set larger than 'spark.sql.adaptive.advisoryPartitionSizeInBytes'.,3.0.0], [spark.sql.allowNamedFunctionArguments,true,If true, Spark will turn on support for named parameters for all functions that has it implemented.,3.5.0], [spark.sql.ansi.doubleQuotedIdentifiers,false,When true and 'spark.sql.ansi.enabled' is true, Spark SQL reads literals enclosed in double quoted (") as identifiers. When false they are read as string literals.,3.4.0], [spark.sql.ansi.enabled,false,When true, Spark SQL uses an ANSI compliant dialect instead of being Hive compliant. For example, Spark will throw an exception at runtime instead of returning null results when the inputs to a SQL operator/function are invalid.For full details of this dialect, you can find them in the section "ANSI Compliance" of Spark's documentation. Some ANSI dialect features may be not from the ANSI SQL standard directly, but their behaviors align with ANSI SQL's style,3.0.0], [spark.sql.ansi.enforceReservedKeywords,false,When true and 'spark.sql.ansi.enabled' is true, the Spark SQL parser enforces the ANSI reserved keywords and forbids SQL queries that use reserved keywords as alias names and/or identifiers for table, view, function, etc.,3.3.0], [spark.sql.ansi.relationPrecedence,false,When true and 'spark.sql.ansi.enabled' is true, JOIN takes precedence over comma when combining relation. For example, `t1, t2 JOIN t3` should result to `t1 X (t2 X t3)`. If the config is false, the result is `(t1 X t2) X t3`.,3.4.0], [spark.sql.autoBroadcastJoinThreshold,10MB,Configures the maximum size in bytes for a table that will be broadcast to all worker nodes when performing a join. By setting this value to -1 broadcasting can be disabled. Note that currently statistics are only supported for Hive Metastore tables where the command `ANALYZE TABLE <tableName> COMPUTE STATISTICS noscan` has been run, and file-based data source tables where the statistics are computed directly on the files of data.,1.1.0], [spark.sql.avro.compression.codec,snappy,Compression codec used in writing of AVRO files. Supported codecs: uncompressed, deflate, snappy, bzip2, xz and zstandard. Default codec is snappy.,2.4.0], ... 183 more fields]
+- SetCommand (-v,None)
== Physical Plan ==
CommandResult [key#3808, value#3809, meaning#3810, Since version#3811]
+- Execute SetCommand
+- SetCommand (-v,None)
|
jonathon
|
|
111bfcf6-5c3d-4e0d-9fa3-213ea0f08ab4
|
2025/06/13 23:29:58
|
2025/06/13 23:29:58
|
2025/06/13 23:29:58
|
204 ms
|
312 ms
|
Listing tables 'catalog : null, schemaPattern : %, tableTypes : null, tableName : %'
|
CLOSED
|
|